www.sajm-online.com ISSN 2251-1512

RESEARCH ARTICLE

Bioperation-somewhat continuous functions

R. Nirmala^①, N. Rajesh^①*

^① Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India E-mail: nrajesh_topology@yahoo.co.in

Received: Nov-1-2018; Accepted: Dec-8-2018 *Corresponding author

Abstract In this paper, we introduce and study the weak form of $\gamma \lor \gamma' - \beta \lor \beta'$ -semicontinuous functions called somewhat $\gamma \lor \gamma' - \beta \lor \beta'$ -semicontinuous functions between bioperation-topological spaces.

Key Words $\gamma \lor \gamma'$ -semiopen set, $\gamma \lor \gamma'$ -somewhat semicontinuous functions MSC 2010 54D05, 54C08

Introduction and Preliminaries 1

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the various modified forms of continuity, separation axioms etc. by utilizing generalized open sets. Kasahara [1] defined the concept of an operation on topological spaces. Ogata and Maki [3] introduced the notion of $\tau_{\gamma \vee \gamma'}$, which is the collection of all $\gamma \vee \gamma'$ -open sets in a bioperation-topological space $(X, \tau, \gamma, \gamma')$. In this paper, we introduce and study the weak form of $\gamma \lor \gamma' - \beta \lor \beta'$ -semicontinuous functions called somewhat $\gamma \lor \gamma' - \beta \lor \beta'$ -semicontinuous functions between bioperation-topological spaces.

Preiliminaries $\mathbf{2}$

The closure and the interior of a subset A of (X, τ) are denoted by Cl(A) and Int(A), respectively.

Definition 2.1. [1] Let (X, τ) be a topological space. An operation γ on the topology τ is function from τ on to power set $\mathcal{P}(X)$ of X such that $V \subset V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of τ at V. It is denoted by $\gamma : \tau \to \mathcal{P}(X)$.

Definition 2.2. [3] A topological space (X, τ) equipped with two operations namely γ and γ' defined on τ is called a bioperation-topological space and it is denoted by $(X, \tau, \gamma, \gamma')$.

Definition 2.3. A subset A of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is said to be $\gamma \lor \gamma'$ -open set [3] if for each $x \in A$ there exists an open neighbourhood U of x such that $U^{\gamma} \cup U^{\gamma'} \subset A$. The complement of $\gamma \lor \gamma'$ -open set is called $\gamma \lor \gamma'$ -closed. $\tau_{\gamma \lor \gamma'}$ denotes set of all $\gamma \lor \gamma'$ -open sets in (X, τ) .

Citation: R. Nirmala, N. Rajesh, Bioperation-somewhat continuous functions, South Asian J Math, 2018, 8(4), 188-193.

Definition 2.4. [3] For a subset A of (X, τ) , $\tau_{\gamma \vee \gamma'}$ -Cl(A) denotes the intersection of all $\gamma \vee \gamma'$ -closed sets containing A, that is, $\tau_{\gamma \vee \gamma'}$ -Cl(A) = $\bigcap \{F : A \subset F, X \setminus F \in \tau_{\gamma \vee \gamma'} \}$.

Definition 2.5. Let A be any subset of X. The $\tau_{\gamma \vee \gamma'}$ -Int(A) is defined as $\tau_{\gamma \vee \gamma'}$ -Int(A) = $\cup \{U : U \text{ is a } \gamma \vee \gamma' \text{-open set and } U \subset A\}.$

Definition 2.6. A subset A of a topological space (X, τ) is said to be $\gamma \vee \gamma'$ -semiopen [2] if $A \subset \tau_{\gamma \vee \gamma'}$ -Cl $(\tau_{\gamma \vee \gamma'}$ -Int(A)).

Theorem 2.7. A subset A of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is $\gamma \lor \gamma'$ -semiopen if, and only if for each $x \in X$ there exists a $\gamma \lor \gamma'$ -semiopen set U such that $x \in U \subset A$.

Definition 2.8. [2] A function $f : (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$ is said to be $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semicontinuous if the inverse image of every $\beta \lor \beta'$ -open set in $(Y, \sigma, \beta, \beta')$ is a $\gamma \lor \gamma'$ -semiopen set in $(X, \tau, \gamma, \gamma')$.

3 Somewhat bioperation-semicontinuous functions

In this section, we introduce and study the weak form of $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semicontinuous functions called somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semicontinuous functions between bioperation-topological spaces.

Definition 3.1. A function $f : (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$ is said to be somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ semicontinuous if for every $\beta \lor \beta'$ -open set U such that $f^{-1}(U) \neq \emptyset$, there exists a $\gamma \lor \gamma'$ -semiopen
set V in X such that $V \neq \emptyset$ and $V \subset f^{-1}(U)$.

It is clear that every $\gamma \lor \gamma'$ -semicontinuous function is somewhat $\gamma \lor \gamma' - \beta \lor \beta'$ -semicontinuous but the converse is not true as shown by the following example

Example 3.2. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}; \sigma = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$. Let $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ and $\beta, \beta' : \sigma \to \mathcal{P}(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{a\}, \\ X & \text{otherwise,} \end{cases} \quad A^{\gamma'} = A, \quad \text{for all} \quad A \in \tau, \\ A^{\beta} = \begin{cases} A & \text{if } a \in A, \\ A \cup \{a\} & \text{if } a \notin A, \end{cases} \quad \text{and} \quad A^{\beta'} = \begin{cases} A & \text{if } c \in A, \\ A \cup \{c\} & \text{if } c \notin A. \end{cases}$$

Then the identity function $f: (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$ is somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semicontinuous but not $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semicontinuous.

Definition 3.3. A subset M of a bioperation-topological space $(X, \tau, \gamma, \gamma')$ is said to be $\gamma \lor \gamma'$ -semidense in X if there is no proper $\gamma \lor \gamma'$ -semiclosed set C in X such that $M \subset C \subset X$.

Theorem 3.4. For a surjective function $f : (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$, the following statements are equivalent:

1. f is somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semicontinuous.

- 2. If C is a $\beta \lor \beta'$ -closed subset of Y such that $f^{-1}(C) \neq X$, then there is a proper $\gamma \lor \gamma'$ -semiclosed subset D of X such that $D \supset f^{-1}(C)$.
- 3. If A is a $\beta \lor \beta'$ -semiopen subset of Y such that $f^{-1}(A) \neq X$, then there is a proper $\gamma \lor \gamma'$ -semiopen subset B of X such that $f^{-1}(A) = B$;
- 4. If M is a $\gamma \lor \gamma'$ -semidense subset of X, then f(M) is a $\beta \lor \beta'$ -dense subset of Y.

Proof. (1) \Rightarrow (2): Let C be a $\beta \lor \beta'$ -closed subset of Y such that $f^{-1}(C) \neq X$. Then $Y \setminus C$ is a $\beta \lor \beta'$ -open set in Y such that $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C) \neq \emptyset$. By (1), there exists a $\gamma \lor \gamma'$ -semiopen set V in X such that $V \neq \emptyset$ and $V \subset f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$. This means that $X \setminus V \supset f^{-1}(C)$ and $X \setminus V = D$ is a proper $\gamma \lor \gamma'$ -semiclosed set in X.

(2) \Rightarrow (1): Let $U \in \sigma_{\beta \vee \beta'}$ and $f^{-1}(U) \neq \emptyset$. Then $Y \setminus U$ is $\beta \vee \beta'$ -closed and $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U) \neq X$. By (2), there exists a proper $\gamma \vee \gamma'$ -semiclosed set D such that $D \supset f^{-1}(Y \setminus U)$. This implies that $X \setminus D \subset f^{-1}(U)$ and $X \setminus D$ is $\gamma \vee \gamma'$ -semiopen and $X \setminus D \neq \emptyset$. (2) \Leftrightarrow (3): Clear.

 $(2) \Rightarrow (4)$: Let M be a $\gamma \lor \gamma'$ -semidense set in X. Suppose that f(M) is not $\beta \lor \beta'$ -dense in Y. Then there exists a proper $\beta \lor \beta'$ -closed set C in Y such that $f(M) \subset C \subset Y$. Clearly $f^{-1}(C) \neq X$. By (2), there exists a proper $\gamma \lor \gamma'$ -semiclosed set D such that $M \subset f^{-1}(C) \subset D \subset X$. This is a contradiction to the fact that M is $\gamma \lor \gamma'$ -semidense in X.

(3) \Rightarrow (2): Suppose (2) is not true. This means that there exists a $\beta \lor \beta'$ -closed set C in Y such that $f^{-1}(C) \neq X$ but there is no proper $\gamma \lor \gamma'$ -semiclosed set D in X such that $f^{-1}(C) \subset D$. This means that $f^{-1}(C)$ is $\gamma \lor \gamma'$ -semidense in X. But by (3), $f(f^{-1}(C)) = C$ must be $\beta \lor \beta'$ -dense in Y, which is a contradiction to the choice of C.

Definition 3.5. A function $f : (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$ is said to be somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semiopen provided that if $U \in \tau_{\gamma \lor \gamma'}$ and $U \neq \emptyset$, then there exists a $\beta \lor \beta'$ -semiopen set V in Y such that $V \neq \emptyset$ and $V \subset f(U)$.

Definition 3.6. A function $f : (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$ is said to be $\gamma \lor \gamma'$ -semiopen provided that if $U \in \tau_{\gamma \lor \gamma'}$, then there exists a $\beta \lor \beta'$ -semiopen set V in Y such that $V \subset f(U)$.

It is clear that every $\gamma \lor \gamma'$ -semiopen function is somewhat $\gamma \lor \gamma' - \beta \lor \beta'$ -semiopen but the converse is not true as the following example shows.

Example 3.7. Let $X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}; \sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Let $\gamma, \gamma' : \tau \to \mathcal{P}(X)$ and $\beta, \beta' : \sigma \to \mathcal{P}(X)$ be operations defined as follows:

$$A^{\gamma} = \begin{cases} A & \text{if } a \in A, \\ A \cup \{a\} & \text{if } a \notin A, \end{cases} A^{\gamma'} = \begin{cases} A & \text{if } c \in A, \\ A \cup \{c\} & \text{if } c \notin A, \end{cases}$$
$$A^{\beta} = \begin{cases} A & \text{if } A = \{a\}, \\ X & \text{otherwise,} \end{cases} \text{ and } A^{\beta'} = A, \text{ for all } A \in \sigma. \end{cases}$$

190

Then the identity function $f : (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$ is somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semiopen but not $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semiopen.

Proposition 3.8. For a bijective function $f : (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$, the following statements are equivalent:

- 1. f is somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semiopen.
- 2. If C is a $\gamma \lor \gamma'$ -closed subset of X such that $f(C) \neq Y$, then there is a $\beta \lor \beta'$ -semiclosed subset D of Y such that $D \neq Y$ and $D \supset f(C)$.

Proof. (1) \Rightarrow (2): Let C be any $\gamma \lor \gamma'$ -closed subset of X such that $f(C) \neq Y$. Then $X \setminus C$ is $\gamma \lor \gamma'$ -open in X and $X \setminus C \neq \emptyset$. Since f is somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semiopen, there exists a $\beta \lor \beta'$ -semiopen set $V \neq \emptyset$ in Y such that $V \subset f(X \setminus C)$. Put $D = Y \setminus V$. Clearly D is $\beta \lor \beta'$ -semiclosed in Y and we claim $D \neq Y$. If D = Y, then $V = \emptyset$, which is a contradiction. Since $V \subset f(X \setminus C)$, $D = Y \setminus V \supset (Y \setminus f(X \setminus C)) = f(C)$. (2) \Rightarrow (1): Let U be any nonempty $\gamma \lor \gamma'$ -open subset of X. Then $C = X \setminus U$ is a $\gamma \lor \gamma'$ -closed set in Xand $f(X \setminus U) = f(C) = Y \setminus f(U)$ implies $f(C) \neq Y$. Therefore, by (2), there is a $\beta \lor \beta'$ -semiclosed set Dof Y such that $D \neq Y$ and $f(C) \subset D$. Clearly $V = Y \setminus D$ is a $\beta \lor \beta'$ -semiopen set and $V \neq \emptyset$. Also, V = $Y \setminus D \subset Y \setminus f(C) = Y \setminus f(X \setminus U) = f(U)$.

Proposition 3.9. For a function $f: (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$, the following statements are equivalent:

- 1. f is somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semiopen.
- 2. If A is a $\beta \lor \beta'$ -semidense subset of Y, Then $f^{-1}(A)$ is a $\gamma \lor \gamma'$ -dense subset of X.

Proof. (1) \Rightarrow (2): Suppose A is a $\beta \lor \beta'$ -semidense set in Y. We want to show that $f^{-1}(A)$ is a $\gamma \lor \gamma'$ -dense subset of X. Suppose not, then there exists a $\gamma \lor \gamma'$ -closed set B in X such that $f^{-1}(A) \subset B \subset X$. Since fis somewhat $\gamma \lor \gamma' - \beta \lor \beta'$ -semiopen and $X \setminus B$ is $\gamma \lor \gamma'$ -open, there exists a nonempty $\beta \lor \beta'$ -semiopen set Cin Y such that $C \subset f(X \setminus B)$. Therefore, $C \subset f(X \setminus B) \subset f(f^{-1}(Y \setminus A)) \subset Y \setminus A$. That is, $A \subset Y \setminus C \subset Y$. Now, $Y \setminus C$ is a $\beta \lor \beta'$ -semiclosed set and $A \subset Y \setminus C \subset Y$. This implies that A is not a $\beta \lor \beta'$ -semidense set in Y, which is a contradiction. Therefore, $f^{-1}(A)$ must be a $\gamma \lor \gamma'$ -dense set in X.

 $\begin{array}{l} (2) \Rightarrow (1): \text{ Suppose } A \text{ is a nonempty } \gamma \lor \gamma' \text{-open subset of } X. \text{ We want to show that } \beta \lor \beta' \text{-}s \operatorname{Int}(f(A)) \neq \emptyset. \\ \text{Suppose } \beta \lor \beta' \text{-}s \operatorname{Int}(f(A)) = \emptyset. \text{ Then, } \beta \lor \beta' \text{-}s \operatorname{Cl}(Y \backslash f(A)) = Y. \text{ Therefore, by } (2), f^{-1}(Y \backslash f(A)) \text{ is } \gamma \lor \gamma' \text{-} \\ \text{dense in } X. \text{ But } f^{-1}(Y \backslash f(A)) \subset X \backslash A. \text{ Now, } X \backslash A \text{ is } \gamma \lor \gamma' \text{-} \text{closed. Therefore, } f^{-1}(Y \backslash f(A)) \subset X \backslash A \text{ gives } \\ X = \gamma \lor \gamma' \text{-} \operatorname{Cl}(f^{-1}(Y \backslash f(A))) \subset X \backslash A. \text{ This implies that } A = \emptyset, \text{ which is contrary to } A \neq \emptyset. \text{ Therefore, } \\ \beta \lor \beta' \text{-}s \operatorname{Int}(f(A)) \neq \emptyset. \text{ This proves that } f \text{ is somewhat } \gamma \lor \gamma' \text{-} \beta \lor \beta' \text{-semiopen.} \end{array}$

Definition 3.10. A bioperation-topological space $(X, \tau, \gamma, \gamma')$ is said to be $\gamma \lor \gamma'$ -semi resolvable if there exists a $\gamma \lor \gamma'$ -semidense set A in X such that X\A is also $\gamma \lor \gamma'$ -semidense in $(X, \tau, \gamma, \gamma')$. Otherewise, $(X, \tau, \gamma, \gamma')$ is called $\gamma \lor \gamma'$ -semiirresolvable.

Theorem 3.11. For a bioperation-topological space $(X, \tau, \gamma, \gamma')$, the following statements are equivalent:

1. $(X, \tau, \gamma, \gamma')$ is $\gamma \lor \gamma'$ -semiresolvable;

2. $(X, \tau, \gamma, \gamma')$ has a pair of $\gamma \lor \gamma'$ -semidense sets A and B such that $A \subset X \setminus B$.

Proof. (1) \Rightarrow (2): Suppose that $(X, \tau, \gamma, \gamma')$ is $\gamma \lor \gamma'$ -semiresolvable. There exists a $\gamma \lor \gamma'$ -semidense set A such that $X \setminus A$ is $\gamma \lor \gamma'$ -semidense. Set $B = X \setminus A$, then we have $A = X \setminus B$.

 $(2) \Rightarrow (1)$: Suppose that the statement (2) holds. Let $(X, \tau, \gamma, \gamma')$ be $\gamma \lor \gamma'$ -semiirresolvable. Then $X \setminus B$ is not $\gamma \lor \gamma'$ -semidense and $\gamma \lor \gamma'$ -s $\operatorname{Cl}(A) \subset \gamma \lor \gamma'$ -s $\operatorname{Cl}(X \setminus B) \neq X$. Hence A is not $\gamma \lor \gamma'$ -semidense. This contradicts the assumption.

Theorem 3.12. For a bioperation-topological space $(X, \tau, \gamma, \gamma')$, the following statements are equivalent:

- 1. $(X, \tau, \gamma, \gamma')$ is $\gamma \lor \gamma'$ -semiirresolvable.
- 2. For any $\gamma \lor \gamma'$ -semidense set A in $X, \gamma \lor \gamma'$ -s $Int(A) \neq \emptyset$.

Proof. (1) \Rightarrow (2): Let A be any $\gamma \lor \gamma'$ -semidense set of X. Then we have $\gamma \lor \gamma'$ - $s \operatorname{Cl}(X \setminus A) \neq X$; hence $\gamma \lor \gamma'$ - $s \operatorname{Int}(A) \neq \emptyset$.

 $(2) \Rightarrow (1)$: Suppose that $(X, \tau, \gamma, \gamma')$ is a $\gamma \lor \gamma'$ -semiresolvable space. Then there exists a $\gamma \lor \gamma'$ -semidense set A in X such that $X \setminus A$ is also $\gamma \lor \gamma'$ -semidense in X. It follows that $\gamma \lor \gamma'$ -s $\operatorname{Int}(A) = \emptyset$, which is a contradiction; hence $(X, \tau, \gamma, \gamma')$ is $\gamma \lor \gamma'$ -semiirresolvable.

Theorem 3.13. If $\bigcup_{i=1}^{n} A_i = X$, where A_i 's are subsets of X such that $\gamma \lor \gamma'$ -s $Int(A_i) = \emptyset$, then $(X, \tau, \gamma, \gamma')$ is a $\gamma \lor \gamma'$ -semiirresolvable.

Proof. By hypothesis, we have $\bigcap_{i=1}^{n} (X \setminus A_i) = \emptyset$. Then, there must be at least two nonempty disjoint subsets $X \setminus A_i$ and $X \setminus A_j$ in X. That is $(X \setminus A_i) \cup (X \setminus A_j) \subset X$. Then $X \setminus A_i \subset A_j$; hence $\gamma \lor \gamma'$ -s $\operatorname{Cl}(A_j) = X$. Also $\gamma \lor \gamma'$ -s $\operatorname{Int}(A_j) = \emptyset$ implies that $\gamma \lor \gamma'$ -s $\operatorname{Cl}(X \setminus A_j) = X$. Therefore, $(X, \tau, \gamma, \gamma')$ has a $\gamma \lor \gamma'$ -semidense set A_j such that $\gamma \lor \gamma'$ -s $\operatorname{Cl}(X \setminus A_j) = X$. Hence $(X, \tau, \gamma, \gamma')$ is a $\gamma \lor \gamma'$ -semiirresolvable.

Theorem 3.14. If $f : (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$ is a somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semiopen function and $\beta \lor \beta'$ -Int $(A) = \emptyset$ for a nonempty set A in Y, then $\gamma \lor \gamma'$ -Int $(f^{-1}(A)) = \emptyset$.

Proof. Let A be a nonempty set in Y such that $\beta \lor \beta'$ -s $\operatorname{Int}(A) = \emptyset$. Then $\beta \lor \beta'$ -s $\operatorname{Cl}(Y \setminus A) = Y$. Since f is somewhat $\gamma \lor \gamma'$ - $\beta \lor \beta'$ -semiopen and $Y \setminus A$ is $\beta \lor \beta'$ -semidense in Y, by Proposition 3.9 $f^{-1}(Y \setminus A)$ is $\gamma \lor \gamma'$ -dense in X. Then, $\gamma \lor \gamma'$ - $\operatorname{Cl}(X \setminus f^{-1}(A)) = X$; hence $\gamma \lor \gamma'$ - $\operatorname{Int}(f^{-1}(A)) = \emptyset$.

Theorem 3.15. Let $f : (X, \tau, \gamma, \gamma') \to (Y, \sigma, \beta, \beta')$ be a somewhat $\gamma \lor \gamma' - \beta \lor \beta'$ -semiopen function. If X is $\gamma \lor \gamma'$ -irresolvable, then Y is $\beta \lor \beta'$ -semiirresolvable.

Proof. Let A be a nonempty set in Y such that $\beta \lor \beta' \cdot s \operatorname{Cl}(A) = Y$. We show that $\beta \lor \beta' \cdot s \operatorname{Int}(A) \neq \emptyset$. Suppose not, then $\beta \lor \beta' \cdot s \operatorname{Cl}(Y \backslash A) = Y$. Since f is somewhat $\gamma \lor \gamma' \cdot \beta \lor \beta'$ -semiopen and $Y \backslash A$ is $\beta \lor \beta'$ -semidense in Y, we have by Proposition 3.9 $f^{-1}(Y \backslash A)$ is $\gamma \lor \gamma'$ -dense in X. Then $\gamma \lor \gamma' \cdot s \operatorname{Int}(f^{-1}(A)) = \emptyset$. Now, since A is $\gamma \lor \gamma'$ -semidense in Y, $f^{-1}(A)$ is $\gamma \lor \gamma'$ -semidense in X. Therefore, for the $\gamma \lor \gamma'$ -semidense set $f^{-1}(A)$, we have $\gamma \lor \gamma'$ -Int $(f^{-1}(A)) = \emptyset$, which is a contradiction to Theorem 3.12. Hence we must have $\beta \lor \beta' \cdot s \operatorname{Int}(A) \neq \emptyset$ for all $\beta \lor \beta'$ -semidense sets A in Y. Hence by Theorem 3.12, Y is $\beta \lor \beta'$ semiirresolvable.

References –

- 1 S.Kasahara, Operation-compact spaces, Math. Japonica 24 (1979), 97 -105
- 2 R. Nirmala and N. Rajesh, Generalization of semiopen sets via bioperations (submitted).
- 3~ H. Ogata and H. Maki, Bioperation on topological spaces, Math. Japonica, $38(5)(1993),~981\mathcharge 985.$