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Abstract The aim of this study is to introduce the notion of rough sets with involution. It is given

some conditions for characterization of lower and upper aproximation of a set in approximation spaces

with involution. Further, the relationship between topological spaces with involution and approximation

spaces are presented in view of categorical aspect.
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1 Introduction

Structures such as fuzzy sets and rough sets make them suitable for data analysis by editing incom-

plete, inadequate and ambiguous information. The rough set theory first proposed by Pawlak in 1982 is a

mathematical method used to obtain information from indefinite and incomplete data [6]. The main con-

cepts of classical rough sets are lower and upper approximation operators based on equivalence relations.

Generalized rough set is defined based on binary relation. Further, a pair (X, r) is called a generalized

approximation space where X is a non-empty set and r is a relation on X [7, 8]. Note that textural rough

set algebra was introduced to approach for generalized rough set, and it is obtained effective results for

classical rough sets in [2, 3, 4].

On the other hand, an involution is a function ′ that is its own inverse, that is, (x′)′ = x for all x in

the domain of ′ [5]. It is well known that the concept of involution is an important tool for fuzzy lattices.

Further, a pair (X,′ ) will be called a set with involution in this work. The main aim of this study is to

present a discussion on rough sets with involution which may give more suitable environments for rough

set theory.

This paper is organized into three sections: the concept of set with involution is introduced, and

some properties are given in the next section. In the section 2, the categories of topological spaces with

involution and some results are given. The section 3 is devoted to the rough sets with involution, and

some properties of approximation spaces with involution are presented. The reader is referred to [5] for

terms from lattice theory not defined here. Generally we follow the terminology of [1] for general concepts

relating to category theory.
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2 Sets and Involution

In this section, the notions of set with involution and complemented function are introduced, and

some categorical properties are given.

Definition 2.1. Let X be a set. A function ′ : X → X , x → x′ is called an involution on X if it is

satisfies

(x′)′ = x, for all x ∈ X.

(X,′ ) is called a set with involution.

Let (X,′ ) be a set with involution and A ⊆ X . Then we will set

A′ = {a′ | a ∈ A}.

We have the following basic properties.

Lemma 2.2. For A, B ⊆ X,

(i) (A′)′ = A.

(ii) A ⊆ B =⇒ A′ ⊆ B′ .

(iii) (X \ A)′ = X \ A′ .

Proof. Since x ∈ A ⇐⇒ x′ ∈ A′ for all x ∈ X , the results are obvious.

Examples 2.3.

(1) The identity involution is defined by x → x′ = x. Then we have A = A′, for all A ⊆ X .

(2) Let X = {a, b, c, d}. We consider the following two involutions,

′

1 : X → X, a → b, b → a, c → d, d → c

and
′

2 : X → X, a → b, b → a, c → c, d → d

Now let A = {b, c}. Then A
′

1 = {a, d} and A
′

2 = {a, c}

(3) Let (X,′1 ) and (Y,′2 ) be sets with involution. Then ′ : X × Y → X × Y which is defined by

(x, y)′ = (x
′

1 , y
′

2), ∀(x, y) ∈ X × Y

is an involution on X × Y .

Definition 2.4. Let (X,′ ) and (Y,′′ ) be sets with involution and f : X → Y be a point function.
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(a) If f◦′ =′′ ◦f then f is called involution preserving.

(b) The complement function f ′ : X → Y is defined by f ′(x) = (f(x′))′′.

(c) f is called complemented if f = f ′.

Lemma 2.5.

(i) f is involution preserving if and only if f is complemented.

(ii) f is complemented if and only if f(x′) = f(x)′′ for all x ∈ X.

Proof. (i)

f is involution preserving ⇐⇒ f◦′ =′′ ◦f

⇐⇒ f(x′) = (f(x))′′, ∀x ∈ X

⇐⇒ f(x) = (f(x′))′′ = f ′(x)

⇐⇒ f is complemented

(ii)

f is complemented ⇐⇒ f(x) = f ′(x), ∀x ∈ X

⇐⇒ f(x′) = f ′(x′), ∀x ∈ X

⇐⇒ f(x′) = f ′(x′) = (f(x′)′)′′ = (f(x))′′

We will denote by SetInv the category of whose objects are sets with involution and whose mor-

phisms are point functions.

Proposition 2.6. The category of sets and functions which is Set is isomorphic to a full subcategory of

SetInv.

Proof. Let SetInvid be the category of sets with identity involution and point functions. Clearly, it is a

full subcategory of SetInv. Now consider the mapping F : Set → SetInvid which is defined by

F (X) = (X,′ ), F (X
f
→ Y ) = (X,′ )

f
→ (Y,′ ), ′ : X → X, x → x′ = x

for every morphism in Set.

We observe that (X,′ ) is a object and f is a morphism in the category SetInvid. Clearly F maps

the identity function on X to the identity function on (X,′ ), while composition of morphisms in Set

corresponds to composition of relations in sets with involution, so F (f ◦g) = F (f)◦F (g). This establishes

that F is a functor. Obviously, F is full and faithful and bijective on objects and so it is an isomorphism

functor.
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Proposition 2.7. The mapping F : SetInv → SetInv, where

F (X, ′) = (X, ′) and F (f) = f ′

is an isomorphism functor, where f ′ is complement function of f .

Proof. Let (X,′ ) be SetInv-object and 1X be the identity morphism. Then F (1X) = 1′F (X) = 1F (X).

Now let f and g be SetInv-morphisms. So,

F (f ◦ g) = (f ◦ g)′ = f ′ ◦ g′ = F (f) ◦ F (g).

Hence, F is a functor. We take (X1,
′

1), (X2,
′

2) ∈ ObSetInv. It is easy to see that the hom-set restriction,

F : hom((X1,
′

1), (X2,
′

2)) → hom((X1,
′

1), (X2,
′

2))

is full and faithful. Further, the mapping F is bijective on objects.

Let (Xj ,
′

j ), j ∈ J be a family of sets with involution and X =
∏

j∈J Xj. Then for x = (xj)j∈J ∈ X

′ : X → Xj , x → x′ = (x
′

j

j)j∈J

is an involution on X . Now let pj : X → Xj be jth− projection functions. Then we have:

Proposition 2.8. (X,′ , (pj)) is product of the family (Xj ,
′

j ) in the category SetInv.

Proof. Let (Z,′′ ) be a SetInv-object and qj : Z → Xj be SetInv-morphisms. We must establish the

existence of a unique difunction p which makes the diagram below commutative for each j ∈ J .

(Z,′′ )
p

//

qj

&&N

N

N

N

N

N

N

N

N

N

N

N

N

(X,′ )

pj

��

(Xj ,
′

j )

Define p : Z → X as

qj(z) = pj(p(z)), ∀z ∈ Z

Clearly, it is a SetInv-morphism and the above diagram is commutative. It remains to show the unique-

ness of p. Suppose that the function k : (Z,′′ ) → (X,′ ) also satisfies qj = pj ◦ k for all j ∈ J . Then for

all xj ∈ Xj

p−1(p−1
j (xj)) = (pj ◦ p)−1(xj) = (pj ◦ k)−1(xj) = k−1(p−1

j (xj))

and we deduce that p−1(x) = k−1(x) for all x ∈ X , and so p = k.

Lemma 2.9. The composition of complemented functions is complemented.
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Proof. Let (Xi,
′

i ) be sets with involution for i = 1, 2, 3. Suppose that f : X1 → X2 and g : X2 → X3 are

complemented function.

Then we observe that for all x ∈ X

(g ◦ f)(x
′

1) = g(f(x
′

1)) = g((f(x))
′

2 ) = (g(f(x)))
′

3

Hence the proof is completed.

We will denote by cSetInv the category of whose objects are sets with involution and whose morphisms

are complemented point functions.

It is noted that cSetInv is subcategory of SetInv.

Lemma 2.10. Let (X,′ ) and (Y,′′ ) be sets with involution and f : X → Y be a point function. Then we

have the following properties:

(i) (f ′)′ = f .

(ii) f ′(A) = (f(A′))′′, A ⊆ X.

(iii) (f ′)−1(B) = (f−1(B′′))′, B ⊆ Y .

(iv) f is complemented iff f(A′) = f(A)′, ∀A ⊆ X.

(v) If f is complemented then f−1(B′′) = (f−1B)′, ∀B ⊆ Y .

Proof. (i) Let x ∈ X . Then (f ′)′(x) = (f ′(x′))′′ = ((f((x′)′))′′)′′ = (f(x)′′)′′ = f(x).

(ii) Let A ⊆ X . Then

y′′ ∈ f(A′)′′ ⇐⇒ y ∈ f(A′)

⇐⇒ ∃x′ ∈ A′ such that y = f(x′)

⇐⇒ ∃x′ ∈ A′ such that y′′ = (f(x′))′′

⇐⇒ ∃x ∈ A such that y′′ = f ′(x)

⇐⇒ y′′ ∈ f ′(A).

(iii) Let B ⊆ Y . Then

x′ ∈ (f−1(B′′))′ ⇐⇒ x ∈ f−1(B′′) ⇐⇒ f(x) ∈ B′′ ⇐⇒ f(x)′′ = f ′(x′) ∈ B ⇐⇒ x′ ∈ (f ′)−1(B).

Since f ′ = f , the results (iv) and (v) are consequences of the results (ii) and (iii).

Let (X,′ ) be product of the family of sets with involution (Xj ,
′

j ), j ∈ J and pj : X → Xj be jth-

projection functions. Then for x = (xj)j∈J ∈ X ,

pj(x
′) = pj((xj)

′) = pj((x
′

j

j)) = x
′

j

j = (pj(x))
′

j

and so projection functions are complemented. Hence, from Proposition 2.8, we have:

Corollary 2.11. The category cSetInv has products.

180



South Asian J. Math. Vol. 8 No. 4

3 Topology and Involution

Lemma 3.1. Let (X,′ ) be a set with involution. Let J be an index set, Aj ∈ P (X). Then:

(i) (
⋂

j∈J Aj)
′ =

⋂

j∈J A′

j .

(ii) (
⋃

j∈J Aj)
′ =

⋃

j∈J A′

j .

Proof. (i) x′ ∈ (
⋂

j∈J Aj)
′ ⇐⇒ x ∈ (

⋂

j∈J Aj) ⇐⇒ ∀j ∈ J, x ∈ Aj ⇐⇒ ∀j ∈ J, x′ ∈ A′

j ⇐⇒ x′ ∈
⋂

j∈J A′

j .

(ii) x′ ∈ (
⋃

j∈J Aj)
′ ⇐⇒ x ∈ (

⋃

j∈J Aj) ⇐⇒ ∃j ∈ J, x ∈ Aj ⇐⇒ ∃j ∈ J, x′ ∈ A′

j ⇐⇒ x ∈
⋃

j∈J A′

j .

Corollary 3.2. Let (X,′ ) be a set with involution and T is a topology on X. Then

T ′ = {G′ | G ∈ T }

is a topology on X.

Further, if F ⊆ X is T -closed then F ′ is T ′-closed.

Proof. Since X ′ = X and ∅′ = ∅, we have X, ∅ ∈ T ′. Further, T ′ is closed under finite intersections and

arbitrary unions by Lemma 3.1. Hence, T ′ is a topology on X .

On the other hand, for F ⊆ X :

F is T − closed ⇐⇒ X \ F is T − open

⇐⇒ (X \ F )′ is T ′ − open

⇐⇒ X \ F ′ is T ′ − open

⇐⇒ F ′ is T ′ − closed

Example 3.3. The identity involution is defined by x → x′ = x. Then we have T = T ′.

Example 3.4. Let X = {a, b, c, d}. Then T = {∅, {a}, X} is a topology on X . Now we consider the

involution,

a → b, b → a, c → d, d → c

Then the involution topology is T ′ = {∅, {b}, X}.

Let (X, ′, T ) be topological spaces with involution. Then identity function on (X,′ ) is continuous,

and the composition of continuous function is continuous. We will denote by TopInv the category of

whose objects are topological spaces with involution and whose morphisms are continuous point functions.

Corollary 3.5. The category topological spaces and continuous functions which is Top is isomorphic to

a full subcategory of TopInv.
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Proof. Let TopInvid be the category of topological spaces with identity involution and continuous point

functions. Clearly, it is a full subcategory of TopInv. Now consider the mapping F : Top → TopInvid

which is defined by

F (X, T ) = (X,′ , T ), F ((X, T )
f
→ (Y, V )) = (X,′ , T )

f
→ (Y,′ , V ), ′ : X → X, x → x′ = x

for every morphism in Top. By Proposition 2.6, F is isomorphism functor.

Lemma 3.6. Let (X, ′, T ) and (Y, ′′, V ) be topological spaces with involution. f : (X, ′, T ) → (Y, ′′, V )

is continuous if and only if f ′ : (X, ′, T ′) → (Y, ′′, V ′′) is continuous.

Proof. The proof is obvious since (f−1(B))′ = (f ′)−1(B′′) = (f−1(B))′ ∈ T ′ for B′′ ∈ V ′′ from Lemma

2.10 (iii).

Corollary 3.7. The mapping F : TopInv → TopInv, where

F (X, ′, T ) = (X, ′, T ′) and F (f) = f ′

is an isomorphism functor.

Proof. The proof is obtained easily from Lemma 3.6 and Proposition 2.7.

4 Rough Set with Involution

In this section, the concept of rough set with involution are presented. Further some characterizations

of lower and upper approximation operators are given in approximation spaces with involution.

Let (X,′ ) be a set with involution and r be a relation on X . Now we set

r′ = {(x′, y′) | (x, y) ∈ r}

Clearly, r′ is a relation on X . Then we have:

Lemma 4.1. For x ∈ X and A ⊆ X,

(i)
(

r(x)
)′

= r′(x′), where r(x) = {y | (x, y) ∈ r}

(ii) (r′)−1A = (r−1A′)′

Proof. (i) Let x ∈ X . For y ∈ X ,

y′ ∈
(

r(x)
)′

⇐⇒ y ∈ r(x) ⇐⇒ (x, y) ∈ r

⇐⇒ (x′, y′) ∈ r′ ⇐⇒ y′ ∈ r′(x′).

(ii) Let A ⊆ X . For y ∈ X ,

y′ ∈ (r−1A′)′ ⇐⇒ y ∈ r−1A′ ⇐⇒ r(y) ⊆ A′

⇐⇒ r′(y′) ⊆ A ⇐⇒ y′ ∈ (r′)−1A.
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Let r be a relation on a universe X . Then the pair (X, r) is called an approximation space [7]. The

operators app
r
, appr : P (X) → P (X) defined by

app
r
A ={x | r(x) ⊆ A}

apprA ={x | r(x) ∩ A 6= ∅}, ∀A ⊆ X.

are called lower approximation operator and upper approximation operator, respectively [7]. Then the

pair (app
r
A, apprA) is called a rough set of A. From [2, Theorem 6.2], we have

app
r
A = X \ r−1(X \ A) and apprA = r−1A.

Lemma 4.2. Let (X,′ , r) be an approximation space with involution and A ⊆ X. Then the following

equalities are satisfied for the rough set (app
r
A, apprA) of A.

(app
r
A)′ = app

r′
A′ and (apprA)′ = appr′A′

Proof. For x ∈ X ,

x ∈ (app
r
A)′ ⇐⇒ x′ ∈ app

r
A

⇐⇒ r(x′) ⊆ A

⇐⇒ (r(x′))′ = r′(x) ⊆ A′

⇐⇒ x ∈ app
r′

A′

On the other hand, it is observe that

x ∈ (apprA)′ ⇐⇒ x′ ∈ apprA

⇐⇒ r(x′) ∩ A 6= ∅

⇐⇒ (r(x′) ∩ A)′ = r′(x) ∩ A′ 6= ∅

⇐⇒ x ∈ appr′A′

Proposition 4.3. Let (X,′ , r) be an approximation space with involution and A ⊆ X. Then

app
r′

A = X \ (r′)−1(X \ A) and appr′A = (r′)−1(A)

Proof. Let A ⊆ X . Then, by [2, Theorem 6.2.], we can write

app
r
A′ = X \ r−1(X \ A′).

From Lemma 4.2,

(

app
r
A′

)′

=
(

X \ r−1(X \ A′)
)′

=⇒ app
r′

A = X \ (r−1(X \ A′))′ = X \ (r′)−1(X \ A).

Likewise, we write

apprA
′ = r−1(A′)
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from [2, Theorem 6.2.]. Then we have

(apprA
′)′ = ((r)−1(A′))′ =⇒ appr′A = (r′)−1(A).

Let (X, r) and (Y, s) be approximation spaces and f : X → Y be a point function. Now we recall that

[3] if

f−1(app
s
(B)) ⊆ app

r
(f−1(B)), ∀B ⊆ Y

then f is called continuous. Equivalently,

f is continuous ⇐⇒ appr(f
−1(B)) ⊆ f−1(appsB), ∀B ⊆ Y.

Further the category of approximation spaces and continuous functions was denoted by App in [3].

Proposition 4.4. Let (X,′ , r) and (Y,′′ , s) be approximation spaces with involution and f : X → Y be

a function. Then f : (X,′ , r) → (Y,′′ , s) is continuous function if and only if f ′ : (X,′ , r′) → (Y,′′ , s′′) is

continuous.

Proof. Let B ⊆ Y . Then B′′ ⊆ Y . Hence,

f is continuous ⇐⇒ f−1(app
s
(B′′)) ⊆ app

r
(f−1(B′′))

⇐⇒ (f−1(app
s
(B′′))′ ⊆ (app

r
(f−1(B′′)))′

⇐⇒ (f ′)−1(app
s
(B′′))′′ ⊆ app

r′
(f−1(B′′))′

⇐⇒ (f ′)−1(app
s′′

B) ⊆ app
r′

(f ′)−1(B)

⇐⇒ f ′ is continuous.

Corollary 4.5. Let f : (X,′ , r) → (Y,′′ , s) be a point function. Then f is continuous if and only if

appr′((f ′)−1(B)) ⊆ (f ′)−1(apps′′B) for all B ⊆ Y .

Proof. Let B ⊆ Y . Then B ⊆ Y . Hence,

f is continuous ⇐⇒ f ′ is continuous

⇐⇒ (f ′)−1(app
s′′

(Y \ B) ⊆ app
r′

(f ′)−1(Y \ B)

⇐⇒ X \ (f ′)−1(apps′′B) ⊆ X \ appr′((f ′)−1(B))

⇐⇒ appr′((f ′)−1(B)) ⊆ (f ′)−1(apps′′B)

We will denote by AppInv the category of whose objects are approximation spaces with involution

and whose morphisms are continuous point functions.
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Proposition 4.6. The mapping F : AppInv → AppInv, where

F (X, ′, r) = (X, ′, r′) and F (f) = f ′

is an isomorphism functor.

Proof. Let (X,′ , r) be AppInv-object and 1X be the identity morphism. Then F (1X) = 1′F (X) = 1F (X).

Now let f and g be AppInv-morphisms. So,

F (f ◦ g) = (f ◦ g)′ = f ′ ◦ g′ = F (f) ◦ F (g).

Hence, F is a functor. We take (X, ′, r), (Y, ′′, s) ∈ ObAppInv. It is easy to see that the hom-set

restriction,

F : hom((X, ′, r), (Y, ′′, s)) → hom((X, ′, r′), (Y, ′′, s′′))

is full and faithful. Further, the mapping F is bijective on objects.

Proposition 4.7. The category App is isomorphic to a full subcategory of AppInv.

Proof. Let AppInvid be the category of approximation spaces with identity involution and continuous-

point functions. Clearly, it is a full subcategory of AppInv. Now consider the mapping F : App →

AppInvid which is defined by

F (X, r) = (X,′ , r), F ((X, r)
f
→ (Y, s)) = (X,′ , r)

f
→ (Y,′ , s), ′ : X → X, x → x′ = x

for every morphism in App.

We observe that (X,′ , r) is an object and f is a morphism in the category AppInvid. Clearly F maps

the identity function on X to the identity function on (X,′ , r), while composition of morphisms in App

corresponds to composition of relations in sets with involution, so F (f ◦g) = F (f)◦F (g). This establishes

that F is a functor. Obviously, F is full and faithful and bijective on objects and so it is an isomorphism

functor.

Recall that if r is a reflexive relation on X then the family

Tr = {G ⊆ X | app
r
G = G}

is a topology on X by Proposition 2 in [3]. Further if ′ is an involution on X , then r′ is also reflexive

relation on (X,′ ), and the family

Tr′ = {G ⊆ X | app
r′

G = G}

is also topology on X .

Note that for F ⊆ X ,

F is Tr − closed ⇐⇒ X \ F is Tr − open

⇐⇒ app
r
(X \ F ) = X \ F

⇐⇒ X \
(

app
r
(X \ F )

)

= X \
(

X \ F
)

⇐⇒ appr(F ) = F
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Then we have the following:

Proposition 4.8. Let (X,′ , r) be approximation space with involution and r be a reflexive relation on

X. Then

(i) T ′

r = {G′ ⊆ X | G ∈ Tr} is a topology on X.

(ii) T ′

r = Tr′ .

Further, if F ⊆ X is Tr-closed then F ′ is T ′

r-closed.

Proof. (i) Firstly, X, ∅ ∈ T ′

r, since X ′ = X and ∅′ = ∅. Further, T ′

r is closed under finite intersections

and arbitrary unions by Lemma 3.1. Hence, T ′

r is a topology on X .

(ii) Let G ⊆ X . Then G′ ∈ T ′

r ⇐⇒ G ∈ Tr ⇐⇒ app
r
G = G ⇐⇒ (app

r
G)′ = G′ ⇐⇒ app

r′
G′ = G′ ⇐⇒

G′ ∈ Tr′.

On the other hand, for F ⊆ X :

F is Tr − closed ⇐⇒ appr(F ) = F

⇐⇒
(

appr(F )
)′

= F ′

⇐⇒ appr′(F ′) = F ′

⇐⇒ F ′ is T ′

r − closed

Proposition 4.9. Let (X,′ , r)and (Y,′′ , s) be approximation spaces with involution and r, s be reflexive

relations. Let f : X → Y be a point function. Then f is Tr − Ts continuous if and only if f ′ is Tr′ − Ts′′

continuous.

Proof. (=⇒:) Suppose that f be a Tr − Ts continuous function. Let B ∈ Ts′′ . We must show that

(f ′)−1B ∈ Tr′ . Then

B ∈ Ts′′ =⇒ app
s′′

B = B =⇒ app
s
B′′ = B′′

=⇒ B′′ ∈ Ts =⇒ f−1(B′′) ∈ Tr

=⇒ app
r
f−1(B′′) = f−1(B′′)

=⇒ app
r′

(f−1(B′′))′ = (f−1(B′′))′

=⇒ app
r′

(f ′)−1B = (f ′)−1B

=⇒ (f ′)−1B ∈ Tr′

(⇐=:) Suppose that f ′ be a Tr′ − Ts′ continuous function. Let B ∈ Ts. We must show that f−1B ∈ Tr.
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Then
B ∈ Ts =⇒ app

s
B = B =⇒ app

s′′
B′′ = B′′

=⇒ B′′ ∈ Ts′′ =⇒ (f ′)−1(B′′) ∈ Tr′

=⇒ app
r′

(f ′)−1(B′′) = (f ′)−1(B′′)

=⇒ app
r
((f ′)−1(B′′))′ = ((f ′)−1(B′′))′

=⇒ app
r
f−1B = f−1B

=⇒ f−1B ∈ Tr
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