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1 Introduction

The study of common fixed point results began with the pioneering work of Jungck [13, 14], who in

1976, proved his remarkable common fixed point theorem for commuting mappings. Later on in 1996,

Jungck also introduced the concept of weakly compatible mappings and proved some common fixed point

theorems in ordinary metric spaces. Jungck’s idea of commuting and compatible mappings has been

equally generalized and extended by several authors in all branches of analysis and topology such as Das

and Naik [7], Pant [17], Sessa [20], Singh[21] are a few to name. For more results in this direction, we

refer to [1], [6], [18], [19], [21], [22] and references therein.

The present paper aims at proving some common fixed point theorems in the setting of complete

metric spaces for pair of weakly compatible mappings. The obtained results are generalization of some

fixed point theorems of Fisher [10]. The following fixed point theorems were proved in [3] and [10].

Theorem 1.1. [3] If T : X → X is a mapping of the complete metric space X into itself satisfying the

inequality

d (Tx, T y) 6 kd (x, y)

for all x, y ∈ X, x 6= y, where 0 6 k < 1, then T has a unique fixed point in X.
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Theorem 1.2. [10] If T : X → X is a mapping of the complete metric space (X, d) into itself satisfying

the inequality

d (Tx, T y) 6 max



















2c1d (x, y) ,

c2 [d (x, Tx) + d (y, T y)] ,

c3 [d (x, T y) + d (y, Tx)]



















,for all x, y ∈ X and 0 6 c1, c2, c3 < 1
2 ,then T has a unique fixed point in X.

Theorem 1.3.[10] If T : X → X is a mapping of the complete metric space (X, d) into itself satisfying

the inequality

[d (Tx, T y)]2 6 max



















2c1d (x, y) [d (x, Tx) + d (y, T y)] ,

2c2d (x, y) [d (x, T y) + d (y, Tx)] ,

c3 [d (x, Tx) + d (y, T y)] [d (x, T y) + d (y, Tx)]



















,for all x, y ∈ X and 0 6 c1, c2, c3 < 1
2 ,then T has a unique fixed point in X.

2 Preliminaries

Definition 2.1. If X is a non empty set and d : X × X → [0,∞) is a mapping satisfy the conditions:

(i) 0 6 d (x, y) ∀ x, y ∈ X and d (x, y) = 0 if and only if x = y.

(ii) d (x, y) = d (y, x) ∀ x, y ∈ X.

(iii) d (x, y) 6 (d (x, z) + d (z, y)) ∀ x, y, z ∈ X.

Then d is called a metric on X and the pair (X, d) is called a metric space.

Definition 2.2. (i) A sequence {xn} in a metric space (X, d) is said to converge to a point x ∈ X, if

for every ∈> 0, there exists N ∈ N such that d (xn, x) <∈, ∀n ∈ N denoted by limn→∞ xn = x

(ii) {xn} is called Cauchy sequence if for some N ∈ N there exists ∈> 0 such that for m, n ∈ N,

m > n we have limm,n→∞ d (xm, xn) = 0.

(iii) A metric space (X, d) is said to be complete if and only if every Cauchy sequence in X converges

to a point of X.

Definition 2.3. Let f and g be two self mappings of a set X into itself. A point x ∈ X is called a

coincident point of the mappings f and g if fx = gx.

Definition 2.4. A point x ∈ X is said to be a fixed point of a self-map f : X → X if T (x) = x.

Definition 2.5.[13] Let (X, d) be a metric space. Two self maps f, g : X → X are said to be commuting

mappings if f (g (x)) = g (f (x)) for all x ∈ X.

Definition 2.6.[20] Two self mappings f and g of a metric space (X, d) into itself are said to be weakly

commuting if d (fgx, gfx) 6 d (fx, gx) for all x ∈ X.
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Definition 2.7.[13] Two self maps f and g of a metric space (X, d) are said to be compatible if

lim
n→∞

d (fgxn, gfxn) = 0

where xn ∈ X such that limn→∞ fxn = limn→∞ gxn = t ∈ X.

Lemma 2.8.[13] Let f and g be compatible mappings of a metric space (X, d) into itself. Suppose that

limn→∞ fxn = limn→∞ gxn = u, for some u ∈ X, then

lim
n→∞

gfxn = fu, if f is continuous.

Example 2.9. Let X is a non-empty set and d : X × X → R+ is a metric on X given by d (x, y) =

|x − y| ∀x, y ∈ X. If f and g on X are given by

f (x) =
1

10
, g (x) =

10x + 1

20

Then f and g commute with each other such that f (g (x)) = g (f (x)) = 1
10 with 1

10 as the unique common

fixed point of f and g and so are weakly compatible on X.

3 Common fixed point results

In this section we obtain coincidence points and common fixed point theorems for four self mappings

in complete metric spaces. In order to start our main results we begin with a simple but useful Lemma

that will be used in the sequel.

Lemma 3.1. Let (X, d) be a complete metric space and let A, B, S, T : X → X be self mappings of X

into itself satisfying the following conditions:

(i) A (X) ⊆ T (X) and B (X) ⊆ S (X).

(ii)

d (A (x) , B (y)) 6 max



















2c1d (S (x) , T (y)) ,

c2 [d (A (x) , T (y)) + d (B (y) , S (x))] ,

c3 [d (A (x) , S (x)) + d (B (y) , T (y))]



















∀x, y ∈ X and c1, c2, c3 > 0 are non negative real numbers such that

0 6 c1, c2, α3 <
1

2

then every sequence {yn} with initial point x0 is a Cauch sequence in X.

Proof. Let x0 ∈ X and choose a point x1 ∈ X such that Tx1 = Ax0 and for x1 there exists x2 ∈ X

such that Sx2 = Bx1, continuing this process we construct sequences {xn} and {yn} in X given by







y2n = Ax2n = Tx2n+1

y2n+1 = Bx2n+1 = Sx2n+2
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Suppose that there exists k ∈ [0, 1) such that

d (yn, yn+1) 6 kd (yn−1, yn) ∀n > 1

We show that {yn} is a Cauchy sequence in X. Using (i) and (ii) , we have

d (y2n, y2n+1) = d (Tx2n+1, hx2n+2) = d (Ax2n, Bx2n+1)

6 max



















2c1d (S (x2n) , T (x2n+1)) ,

c2 [d (A (x2n) , T (x2n+1)) + d (B (x2n+1) , S (x2n))] ,

c3 [d (A (x2n) , S (x2n)) + d (B (x2n+1) , T (x2n+1))]



















6 max



















2c1d (y2n−1, y2n) ,

c2 [d (A (y2n) , y2n) + d (y2n+1, y2n−1)] ,

c3 [d (y2n, y2n−1) + d (y2n+1, y2n)]



















6 max {2cd (y2n−1, y2n) , c [d (y2n−1, y2n) + d (y2n, y2n+1)]}

where

c = max {c1, c2, c3} <
1

2

Hence, ether

d (y2n, y2n+1) 6 2cd (y2n−1, y2n)

or

d (y2n, y2n+1) 6
c

(1 − c)
d (y2n−1, y2n)

In either case, we have

d (y2n, y2n+1) 6 kd (y2n−1, y2n)

Similarly,

d (y2n−1, y2n) 6 k2d (y2n−2, y2n−1)

where k = max
{

2c, c
(1−c)

}

< 1 and since, 0 6 c < 1
2 we have 0 6 k < 1.

Therefore, for all n ∈ N, we can write

d (yn+1, yn+2) 6 kd (yn, yn+1) 6 ... 6 kn+1d (y0, y1)

Now, for any m, n ∈ N, m > n, we have

d (yn, ym) 6 d (yn, yn−1) + d (yn−1, yn−2) + ... + d (ym−1, ym)

6 knd (y0, y1) + kn+1d (y0, y1) + ... + km−1d (y0, y1)

=
kn

(1 − k)
d (y0, y1) → 0 as n, m → ∞.

Thus,

d (yn, ym) → 0 as n → ∞.

Hence {yn} is a Cauchy sequence in complete metric space X.
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The following theorem extends and generalizes Theorem 1.2 of Fisher[10] for four compatible map-

pings.

Theorem 3.2. Let (X, d) be a complete metric space and let A, B, S, T : X → X be self mappings of

X into itself satisfying the following conditions

(i) A (X) ⊆ T (X) , B (X) ⊆ S (X) and

(ii) T (X) or S (X) is a complete subspace of X.

(iii) the pairs {A, S} and {B, T } are weakly compatible.

(iv) A and B satisfy the inequality

d (A (x) , B (y)) 6 max



















2c1d (S (x) , T (y)) ,

c2 [d (A (x) , T (y)) + d (B (y) , S (x))] ,

c3 [d (A (x) , S (x)) + d (B (y) , T (y))]



















(3.1)

∀x, y ∈ X and c1, c2, c3 > 0 are non negative real numbers such that

0 6 c1, c2, α3 <
1

2
(3.2)

then A, B, S and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X.In view of condition (i) , we can inductively define a

sequence {yn} in X such that y2n = Ax2n = Tx2n+1and y2n+1 = Bx2n+1 = Sx2n+2, n = 0, 1, 2, 3, ..

First, we use condition (iv) to show that {yn} is a Cauchy sequence in X . On substituting x = x2n and

y = x2n+1 in inequality (3.1) gives us

d (y2n, y2n+1) = d (Ax2n, Bx2n+1) 6

max



















2c1d (S (x2n) , T (x2n+1)) ,

c2 [d (A (x2n) , T (x2n+1)) + d (B (x2n+1) , S (x2n))] ,

c3 [d (A (x2n) , S (x2n)) + d (B (x2n+1) , T (x2n+1))]



















which is equivalent to

d (y2n, y2n+1) 6 max



















2c1d (y2n−1, y2n) ,

c2 [d (y2n, y2n) + d (y2n+1, y2n−1)] ,

c3 [d (y2n, y2n−1) + d (y2n+1, y2n)]



















6 max {2cd (y2n−1, y2n) , c [d (y2n−1, y2n) + d (y2n, y2n+1)]}

where

c = max {c1, c2, c3} <
1

2

Hence, either

d (y2n, y2n+1) 6 2cd (y2n−1, y2n)

or

d (y2n, y2n+1) 6
c

(1 − c)
d (y2n−1, y2n)
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In either case, we have

d (y2n, y2n+1) 6 kd (y2n−1, y2n) (3.3)

Similarly, we can write

d (y2n−1, y2n) 6 k2d (y2n−2, y2n−1) (3.4)

Where k = max
{

2c, c
(1−c)

}

< 1 and since, 0 6 c < 1
2 we have 0 6 k < 1.

Therefore, for all n ∈ N , we can write

d (yn+1, yn+2) 6 kd (yn, yn+1) 6 ... 6 kn+1d (y0, y1) (3.5)

So, for all m > n,we have by (3.5) and triangle inequality

d (yn, ym) 6 d (yn, yn−1) + d (yn−1, yn−2) + ... + d (ym−1, ym)

6 knd (y0, y1) + kn+1d (y0, y1) + ... + km−1d (y0, y1)

=
kn

(1 − k)
d (y0, y1) → 0 as n, m → ∞.

It follows from Lemma 3.1 that the sequence {yn} is a Cauchy sequence and by the completeness of X ,

the sequence {yn} converges to some y ∈ X such that

lim
n→∞

yn = lim
n→∞

Ax2n = lim
n→∞

Bx2n+1 = lim
n→→∞

Sx2n+2 = lim
n→∞

Tx2n+1 = y.

Now, we assume that T (X) is a complete subspace of X . Then there exists v ∈ X such that Tv = y.

If Bv 6= y then by using (3.1), we have

d (A (x2n) , B (v)) 6

max







2c1d (S (x2n) , T (v)) , c2 [d (A (x2n) , T (v)) + d (B (v) , S (x2n))] ,

c3 [d (A (x2n) , S (x2n)) + d (B (v) , T (v))]







As n → ∞, we obtain

d (y, Bv) 6 max



















2cd (y, T v) ,

c [d (y, T v) + d (Bv, y)] ,

c [d (y, y) + d (Bv, T v)]



















6 max



















2cd (y, y) ,

c [d (y, y) + d (y, Bv)]

c [d (y, y) + d (Bv, y)] ,



















= max {0, cd (y, Bv)}

Hence

(1 − c) d (y, Bv) 6 0
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and the above inequalities is possible only if d (y, Bv) = 0 ⇒ y = Bv = Tv. In other words, v is a

coincidence point of B and T . Since B and T are weakly compatible, they commute at a coincident point.

Therefore,

BT (v) = TB (v) and so By = Ty

If y 6= By, By using (3.1), we get

lim
n→∞

d (Ax2n, By) 6

max limn→∞



















2cd (Sx2n, T y) ,

c [d (Ax2n, T y) + d (By, Sx2n)] ,

c [d (Ax2n, Sx2n) + d (By, Ty)]



















Hence,

d (y, By) 6 max



















2cd (y, T y) ,

c [d (y, T y) + d (y, By)] ,

d [d (y, y) + d (By, Ty)]



















= max



















2cd (y, By) ,

2cd (y, By) ,

0



















= 2cd (y, By)

and this implies that (1 − 2c)d (y, By) 6 0 which is possible only if d (y, By) = 0 ⇒ y = By

Since B (X) ⊆ S (X), there exists u ∈ X such that Su = y.

If Au 6= y,by (3.1), we have

d (Au, By) 6 max



















2cd (Su, T y) ,

c [d (Au, Ty) + d (By, Su)] ,

c [d (Au, Su) + d (By, Ty)]



















and this gives us

d (Au, y) 6 max



















2cd (Su, y) ,

c [d (Au, y) + d (y, Su)] ,

c [d (Au, Su) + d (y, y)]



















= cd (Au, By)

⇒ (1 − c) d (Au, By) 6 0
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and the inequality is possible only if d (Au, y) = 0 ⇒ Au = y and hence, Au = Su = y.Since, A and S

are weakly compatible, ASu = SAu and so Ay = Sy

d (Ay, y) = d (Ay, By)

6 max



















2cd (Sy, y) ,

c [d (Ay, y) + d (y, Sy)] ,

c [d (Ay, Sy) + d (y, y)]



















If Ay 6= y,again by (3.1) we have

= max







2cd (Ay, y) ,

0







= 2cd (Ay, y)

This implies that (1 − 2c) d (Au, y) 6 0 which is posible only if d (Au, y) = 0. Hence, y = Au. Thus,

Ay = By = Sy = Ty = y and so y is a common fixed point of A, B, S and T .

Uniqueness: To claim uniqueness of y, suppose there exists another common fixed point y∗ ∈ X of A,

B, S and T such that A (y∗) = B (y∗) = S (y∗) = T (y∗) = y∗. Using condition (3.1) , we have

d (y, y∗) = d (A (y) , B (y∗)) 6 max



















2cd (S (y) , T (y∗)) ,

c [d (A (y) , T (y∗)) + d (B (y∗) , S (y))] ,

c [d (A (y) , S (y)) + d (B (y∗) , T (y∗))]



















6 max



















2cd (y, y∗) ,

c [d (y, y∗) + d (y∗, y)] ,

c [d (y, y) + d (y∗, y∗)]



















= 2cd (y, y∗)

which is possible only if d (y, y∗) = 0, since c < 1
2 , it follows that y = y∗ which gives the uniqueness of

the common fixed point y of A, B, S and T in X .

Example 3.3. Let X = [0, 1] with the metric d (x, y) = |x − y| and define the self maps A, B, S and T

on X by

A (x) = B (x) =
{

1
3

}

S (x) =







1
3 , 0 6 x < 1

1, x = 1
, T (x) =







1
3 , 0 6 x < 1

3

1, 1
3 < x 6 1

Then A (X) = B (X) =
{

1
3

}

and S (X) = T (X) =
{

1
3 , 1

}

. Now, we see that A (X) = B (X) ⊆

S (X) = T (X) with S (X) and T (X) is complete subspace of X .
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Also, we have A (S (x)) = S (A (x)) . Similarly, B (T (x)) = T (B (x)) for.So, the pairs {A, S} and

{B, T } commute at coincidence point and are compatible. Hence, these mappings satisfies the conditions

of Theorem 3.2 with 1
3 as the unique common fixed point of A, B, S and T . Theorem 3.2 yields the

following Corollaries.

Corollary 3.4. Let(X, d) be a complete metric space and let A, S, T : X → X be self mappings of X

into itself satisfying the following conditions

(i) A (X) ⊆ T (X) , A (X) ⊆ S (X) and

(ii) either S (X) or T (X) is a complete subspace of X.

(iii) the pairs {A, S} and {A, T } are weakly compatible and satisfy the inequality

d (A (x) , A (y)) 6 max



















2c1d (S (x) , T (y)) ,

c2 [d (A (x) , T (y)) + d (A (y) , S (x))] ,

c3 [d (A (x) , S (x)) + d (A (y) , T (y))]



















∀x, y ∈ X and c1, c2, c3 > 0 are non negative real numbers such that

0 6 c1, c2, α3 <
1

2

then A, S and T have a unique common fixed point in X.

Proof The proof follows from Theorem 3.2 by taking B = A.

Corollary 3.5. Let(X, d) be a complete metric space and let A, T : X → X be commuting self maps of

X into itself such that

(i) A (X) ⊆ T (X)

(ii) T (X) is a complete subspace of X

(iii) the pair{A, T } is weakly compatible

(iv) A and T satisfy the inequality

d (A (x) , A (y)) 6 max



















2c1d (T (x) , T (y)) ,

c2 [d (A (x) , T (y)) + d (A (y) , T (x))] ,

c3 [d (A (x) , T (x)) + d (A (y) , T (y))]



















∀x, y ∈ X and c1, c2, c3 > 0 are non negative real numbers such that

0 6 c1, c2, α3 <
1

2

then A and T have a unique common fixed point in X.

Proof. The proof follows from Theorem 3.2 by taking B = A and S = T .

Corollary 3.6. If T : X → X is a mapping of the complete metric space (X, d) into itself satisfying the

inequality

d (Tx, T y) 6 max



















2c1d (x, y) ,

c2 [d (x, Tx) + d (y, T y)] ,

c3 [d (x, T y) + d (y, Tx)]


















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,for all x, y ∈ X and 0 6 c1, c2, c3 < 1
2 , then T has a unique fixed point in X .

Proof The proof follows from Theorem 3.2 by taking A = B = T and S = IX (Identity mapping).

Our next theorem is an extension of Theorem 1.3 in [10].

Theorem 3.7. Let (X, d) be a complete metric space and let A, B, S and T : X → X be self maps of

X into itself such that

(i) A (X) ⊆ T (X), B (X) ⊆ S (X) .

(ii) S and T are continuous and

(iii) the pairs {A, S} and {B, T } are compatible on X and satisfy the inequality

[d (A (x) , B (y))]2 6

max































2c1d (S (x) , T (y)) [d (A (x) , S (x)) + d (B (y) , T (y))] ,

2c2d (S (x) , T (y)) [d (A (x) , T (y)) + d (B (y) , S (x))] ,

c3 [d (A (x) , S (x)) + d (B (y) , T (y))]×

[d (A (x) , T (y)) + d (B (y) , S (x))]































(3.6)

∀x, y ∈ X and 0 6 c1, c2, c3 < 1
4 , then A, B, S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X . As A (X) ⊆ T (X) , we choose x1 ∈ X such that A (x0) = T (x1). Since

Bx1 ∈ S (X) , we can choose x2 ∈ X such that Bx1 = Sx2. In general x2n+1 and x2n+2 so that we can

define the Picard sequence {yn} in X , given by







y2n = Ax2n = Tx2n+1 and

y2n+1 = Bx2n+1 = Sx2n+2∀n > 0
..

Now, from (3.6) , we have .

[d (y2n+1, y2n+2)]
2

= [d (A (x2n) , B (x2n+1))]
2

6

max































2c1d (S (x2n) , T (x2n+1)) [d (A (x2n) , S (x2n)) + d (B (x2n+1) , T (x2n+1))] ,

2c2d (S (x2n) , T (x2n+1)) [d (A (x2n) , T (x2n+1)) + d (B (x2n+1) , S (x2n))] ,

c3 [d (A (x2n) , S (x2n)) + d (B (x2n+1) , T (x2n+1))]×

[d (A (x2n) , T (x2n+1)) + d (B (x2n+1) , S (x2n))]































= max































2c1d (y2n−1, y2n) [d (y2n, y2n−1) + d (y2n+1, y2n)] ,

2c2d (y2n−1, y2n) [d (y2n, y2n) + d (y2n+1, y2n−1)] ,

c3 [d (y2n, y2n−1) + d (y2n+1, y2n)]×

[d (y2n, y2n) + d (y2n+1, y2n−1)]































6 max







2cd (y2n−1, y2n) [d (y2n, y2n−1) + d (y2n+1, y2n)] ,

c [d (y2n+1, y2n) + d (y2n, y2n−1)]
2






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where c = max {c1, c2, c3}

Now, since X is a complete metric space, there exist a point u ∈ X such that

lim
n→∞

Ax2n = lim
n→∞

Tx2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = u

We show that u is a common fixed point of A, B, S and T.

Now, since S is continuous, therefore

lim
n→∞

S2x2n+2 = Su and lim
n→∞

Ax2n = u

Since the pair{A, S} is compatible on X , so

lim
n→∞

(ASx2n, SAx2n) = 0

So, by Lemma 2.8, we have

lim
n→∞

ASx2n = Su

Put x = Sx2n and y = x2n+1 in (3.6) , we obtain

[d (A (Sx2n) , B (x2n+1))]
2

6

max































2c1d (S (Sx2n) , T (x2n+1)) [d (A (Sx2n) , S (Sx2n)) + d (B (x2n+1) , T (x2n+1))] ,

2c2d (S (Sx2n) , T (x2n+1)) [d (A (Sx2n) , T (x2n+1)) + d (B (x2n+1) , S (Sx2n))] ,

c3 [d (A (Sx2n) , S (Sx2n)) + d (B (x2n+1) , T (x2n+1))]×

[d (A (Sx2n) , T (x2n+1)) + d (B (x2n+1) , S (Sx2n))]































Taking limit as n → ∞, we get

[d (Su, u)]
2

6

max































2cd (Su, u) [d (Su, Su) + d (u, u)] ,

2cd (Su, u) [d (Su, u) + d (u, Su)] ,

c [d (Su, Su) + d (u, u)]×

[d (Su, u) + d (u, Su)]































6 max
{

0, 4c [d (u, Su)]
2
, 0

}

⇒ [d (Su, u)]2 6 4c [d (Su, u)]2

where c = max {c1, c2, c3} <
1

4

and the above inequality is possible only if [d (Su, u)]
2

= 0 ⇒ d (Su, u) = 0 ⇒ Su = u, since 0 6 c < 1
4 .

Next we will show that Su = Tu = u. Since, T is continuous, so using continuity of T , we have,

limn→∞ T (Tx2n+1) = Tu and limn→∞ TBx2n+1 = Tu. Since B and T are compatible, limn→∞ d (BTx2n, TBx2n) =
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0.By Lemma 2.8, we have limn→∞ BTx2n = Tu.Now, by putting x = x2n and y = Tx2n+1 in (3.6), we

obtain

[d (A (x2n) , B (Tx2n+1))]
2

6

max































2c1d (S (x2n) , T (Tx2n+1)) [d (A (x2n) , S (x2n)) + d (B (Tx2n+1) , T (Tx2n+1))] ,

2c2d (S (x2n) , T (Tx2n+1)) [d (A (x2n) , T (Tx2n+1)) + d (B (Tx2n+1) , S (x2n))] ,

c3 [d (A (x2n) , S (x2n)) + d (B (Tx2n+1) , T (Tx2n+1))]×

[d (A (x2n) , T (Tx2n+1)) + d (B (Tx2n+1) , S (x2n))]































Taking limit as n → ∞, we have

[d (u, Tu)]
2

6 max



















2cd (u, Tu) [d (u, u) + d (Tu, Tu)] ,

2cd (u, Tu) [d (u, Tu) + d (Tu, u)] ,

c [d (u, u) + d (Tu, Tu)] × [d (u, Tu) + d (Tu, u)]



















6 max
{

0, 4c [d (u, Tu)]
2
, 0

}

which implies

[d (u, Tu)]
2

6 4c [d (u, Tu)]
2

which is contradiction, because 0 6 c < 1
4 ⇒ [d (Tu, u)]

2
6 0 and the inequality is possible only if Tu = u.

Hence, Tu = Su = u.

Again, utilizing condition (3.6), we obtain

[d (A (u) , B (x2n+1))]
2

6

max































2c1d (S (u) , T (x2n+1)) [d (A (u) , S (u)) + d (B (x2n+1) , T (x2n+1))] ,

2c2d (S (u) , T (x2n+1)) [d (A (u) , T (x2n+1)) + d (B (x2n+1) , S (u))] ,

c3 [d (A (u) , S (u)) + d (B (x2n+1) , T (x2n+1))]×

[d (A (u) , T (x2n+1)) + d (B (x2n+1) , S (u))]































Taking limit as n → ∞ and Su = Tu = u, we have

[d (A (u) , u)]
2

6 max































2cd (S (u) , u) [d (A (u) , S (u)) + d (u, u)] ,

2cd (S (u) , u) [d (A (u) , u) + d (u, S (u))] ,

c [d (A (u) , S (u)) + d (u, u)]×

[d (A (u) , u) + d (u, S (u))]































= max
{

0, 0, c [d (Au, u)]
2
}

= c [d (u, Au)]
2
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⇒ [d (A (u, u))]
2

6 c [d (u, Au)]
2

which implies that d (Au, u) = 0 ⇒ Au = u, since 0 6 c < 1
4 .

Finally, by using condition(3.6) and the fact that Su = Tu = Au = u, we have

[d (u, B (u))]2 = [d (Au, Bu)]2 6

max































2cd (S (u) , T (u)) [d (A (u) , S (u)) + d (B (u) , T (u))] ,

2cd (S (u) , T (u)) [d (A (u) , T (u)) + d (B (u) , S (u))] ,

c [d (A (u) , S (u)) + d (B (u) , T (u))]×

[d (A (u) , T (u)) + d (B (u) , S (u))]































= max
{

0, 0, c [d (u, Bu)]
2
}

= c [d (u, Bu)]
2

⇒ [d (u, Bu)]
2

6 c [d (u, Bu)]
2

and the above inequality is possible only, if d (u, Bu) = 0 and which implies that Bu = u.Hence, Au =

Bu = Su = Tu = u.

Uniqueness: For uniqueness, let u 6= v is another common fixed point of the mappings A, B, S and T

. We prove that u = v.

Putting x = u and y = v in (3.6) , we obtain

[d (u, v)]
2

= [d (A (u) , B (v))]
2

6

max































2cd (S (u) , T (v)) [d (A (u) , S (u)) + d (B (v) , T (v))] ,

2cd (S (u) , T (v)) [d (A (u) , T (v)) + d (B (v) , S (u))] ,

c [d (A (u) , S (u)) + d (B (v) , T (v))]×

[d (A (u) , T (v)) + d (B (v) , S (u))]































= max



















2cd (u, v) [d (u, u) + d (v, v)] ,

2cd (u, v) [d (u, v) + d (v, u)] ,

c [d (u, u) + d (v, v)] × [d (u, v) + d (v, u)]



















= max
{

0, 4c [d (u, v)]
2
, 0

}

= 4c [d (u, v)]2

⇒ [d (u, v)]
2

6 4c [d (u, v)]
2

or

(1 − 4c) [d (u, v)]
2

6 0

and the inequality is possible only if [d (u, v)]
2

= 0 and this implies d (u, v) = 0 or u = v which proves

the uniqueness of the common fixed point of u of mappings A, B, S and T.
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Example 3.8. Let X = [0, 1] with the metric d (x, y) = |x − y|. Define the self maps A, B, S and T on

X as follows

A (x) =







x
10 , 0 6 x 6 1

0, x = 1,
B (x) =







x
4 , 0 6 x 6 1

2

0, 1
2 < x 6 1

S (x) = x and T (x) =
x

2

Clearly, A (X) ⊆ T (X) and B (X) ⊆ S (X) for all x, y ∈ X . Furthermore, the pairs {A, S} and {B, T }

are compatible. Therefore, A, B, S and T satisfy all conditions of Theorem 3.7 with x = 0 is the unique

common fixed point in X .

Corollary 3.9. Let (X, d) be a complete metric space and let A, S and T : X → X be self maps of X

into itself such that

(i) A (X) ⊆ T (X), A (X) ⊆ S (X) .

(ii) S and T are continuous and

(iii) the pairs {A, S} and {A, T } are compatible on X and satisfy the inequality

[d (A (x) , A (y))]2

max































2c1d (S (x) , T (y)) [d (A (x) , S (x)) + d (A (y) , T (y))] ,

2c2d (S (x) , T (y)) [d (A (x) , T (y)) + d (A (y) , S (x))] ,

c3 [d (A (x) , S (x)) + d (A (y) , T (y))]×

[d (A (x) , T (y)) + d (A (y) , S (x))]































∀x, y ∈ X and 0 6 c1, c2, c3 < 1
4 , then A, S and T have a unique common fixed point in X.

Proof The proof follows from Theorem 3.7 by taking B = A.

Corollary 3.10. Let (X, d) be a complete metric space and let A, and T : X → X be self maps of X

into itself such that

(i) A (X) ⊆ T (X), A (X) ⊆ T (X) .

(ii) A or T is continuous and

(iii) the pairs {A, T } is compatible on X and satisfy the inequality

[d (A (x) , A (y))]
2

6

max































2c1d (T (x) , T (y)) [d (A (x) , T (x)) + d (A (y) , T (y))] ,

2c2d (T (x) , T (y)) [d (A (x) , T (y)) + d (A (y) , T (x))] ,

c3 [d (A (x) , T (x)) + d (A (y) , T (y))]×

[d (A (x) , T (y)) + d (A (y) , T (x))]































∀x, y ∈ X and 0 6 c1, c2, c3 < 1
4 , then A and T have a unique common fixed point in X.
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Proof The proof follows from Theorem 3.7 by taking B = A and S = T.

Corollary 3.11. Let (X, d) be a complete metric space and let T : X → X be self map of X into itself

and satisfy the inequality

[d (T (x) , T (y))]2 6

max































2c1d ((x) , T (y)) [d (T (x) , (x)) + d (T (y) , T (y))] ,

2c2d ((x) , T (y)) [d (T (x) , T (y)) + d (T (y) , (x))] ,

c3 [d (T (x) , (x)) + d (T (y) , T (y))]×

[d (T (x) , T (y)) + d (T (y) , (x))]































∀x, y ∈ X and 0 6 c1, c2, c3 < 1
4 , then T have a unique fixed point in X.

Proof. The proof follows from Theorem 3.7 by taking A = B = T and S = IX (Identitymapping).
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