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1 Introduction and Preliminaries

In the theory of space curves in differential geometry, the associated curve, the curves for which

at the corresponding points of them one of the Frenet vectors of a curve coincides with the one of the

Frenet vectors of the other curve have an important role for the characterizations of space curves. The

well-known example of such curves is Bertrand curve. Another kind of associated curve have been called

Mannheim curve and Mannheim partner curve. The notion of Mannheim curves was discovered by

A.Mannheim in 1878. These curves in Euclidean 3-space are characterized in terms of the curvature and

torsion as follows:

A space curve is a Mannheim curve if end only if its curvature κ and torsion τ satisfy the relation

κ = c(κ2 + τ2) for some constant.

On the other hand, Galilean 3-space G3 is simply defined as a Klein geometry of the product space

RXE
2 whose symmetry group is Galilean transformation group which has an important place in classical

and modern physics. A curve in Galilean 3-space G3 is a graph of a plane motion. Note that such a

curve is called a worldline in 3-dimensional Galilean space. It is well known that, the idea of worldlines

originates in physics and was pioneered by Einstein. The term is now most often in relativity theories,

i.e., general relativity and special relativity.

From the differential geometric point of view, the study of curves in G3 has its own interest. In

recent years, many interesting results on curves in G3 have been obtained by many authors in literature

[1,3,4,10,11].
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In [6], firstly, the author constructed Frenet-Serret frame of a curve in the Galilean 4-space and

obtained the mentioned curve’s Frenet-Serret equations.

In this paper, using the method in [7], we study the generalized Mannheim Curves in 4-dimensional

Galilean Space. We obtain the caracterizations of the generalized Mannheim curves in this space.

In the following, some fundamental properties of curves in 4D Galilean space is given for the purpose

of the requirements [2].

In Affine coordinates the Galilean scalar product between two points

Pi = (pi1, pi2, pi3, pi4), i = 1, 2

is defined by

g(P1, P2) =





|p21 − p11| , if p21 6= p11,√∣∣(p22 − p12)2 + (p23 − p13)2 + (p24 − p14)2

∣∣, if p21 = p11.

The Galilean cross product in G4 for the vectors −→u = (u1, u2, u3, u4),
−→v = (v1, v2, v3, v4) and

−→w = (w1, w2, w3, w4) is defined by:

−→u ∧ −→v ∧ −→w = −

∣∣∣∣∣∣∣∣∣∣∣∣

0 e2 e3 e4

u1 u2 u3 u4

v1 v2 v3 v4

w1 w2 w3 w4

∣∣∣∣∣∣∣∣∣∣∣∣

,

where ei , 1 6 i 6 4, are the standart basis vectors.

The scalar product of two vectors
−→
U = (u1, u2, u3, u4) and

−→
V = (v1, v2, v3, v4) in G4 is defined by

〈−→
U ,

−→
V
〉

G4

=





u1v1, if u1 6= 0 or v1 6= 0,

u2v2 + u3v3 + u4v4 if u1 = 0 and v1 = 0.

The norm of vector
−→
U = (u1, u2, u3, u4) is defined by

∥∥∥
−→
U
∥∥∥

G4

=

√∣∣∣∣
〈−→
U ,

−→
U
〉

G4

∣∣∣∣,

[2].

Let α : I ⊂ R −→ G4 , α(s) = (s, y(s), z(s), w(s)) be a curve parametrized by arclength s in G4.

The first vector of the Frenet-Serret frame, that is the tangent vector of α is defined by

t = α′(s) = (1, y′(s), z′(s), w′(s)).

Since t is a unit vector, so we can express

〈t, t〉
G4

= 1. (1.1)
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Differentiating the equation (1.1) with respect to s, we have

〈t′, t〉
G4

= 0.

The vector function t′ gives us the rotation measurement of the curve α. The real valued function

κ(s) = ‖t′(s)‖ =
√

(y′′(s))2 + (z′′(s))2 + (w′′(s))2

is called the first curvature of the curve α. We assume that, κ(s) 6= 0, for all s ∈ I. Similar to space G3,

the principal vector is defined by

n(s) =
t′(s)

κ(s)

in another words

n(s) =
1

κ(s)
(0, y′′(s), z′′(s), w′′(s)), (1.2)

[2].

By the aid of the differentiation of the principal normal vector given in (1.2), define the second

curvature function is defined by

τ(s) = ‖n′(s)‖
G4
. (1.3)

This real valued function is called torsion of the curve α. The third vector field, namely binormal vector

field of the curve α is defined by

b(s) =
1

τ(s)

(
0,

(
y′′(s)

κ(s)

)
′

,

(
z′′(s)

κ(s)

)
′

,

(
w′′(s)

κ(s)

)
′

)
. (1.4)

Thus the vector b(s) is both perpendicular to t and n. The fourth unit vector is defined by

e(s) = µt(s)Λn(s)Λb(s). (1.5)

Here the coefficient µ is taken ±1 to make +1 determinant of the matrix [t, n, b, e].

The third curvature of the curve α by the Galilean inner product is defined by

σ = 〈b′, e〉
G4
. (1.6)

Here, as well known, the set {t, n, b, e, κ, τ, σ} is called the Frenet-Serret apparatus of the curve α. We

know that the vectors {t, n, b, e} are mutually orthogonal vectors satisfying

〈t, t〉
G4

= 〈n, n〉
G4

= 〈b, b〉
G4

= 〈e, e〉
G4

= 1, (1.7)

〈t, n〉
G4

= 〈t, b〉
G4

= 〈t, e〉
G4

= 〈n, b〉
G4

= 〈n, e〉
G4

= 〈b, e〉
G4

= 0.

For the curve α in G4, we have following the Frenet-Serret equations

t′ = κ(s)n(s)

n′ = τ(s)b(s), 1.8 (1)

b′ = −τ(s)n(s) + σ(s)e(s),

e′ = −σ(s)b(s),

[2].

During this paper, we will denote the Frenet-Serret vectors with {e1, e2, e3, e4}.
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2 On Generalized Mannheim Curves in 4D Galilean Space

First we give some definitions.

Definition 2.1. Let C be a curve parametrized by arclength s in G4. The curve C is a generalized

Mannheim curve if there exists a C̃ in G4 such that the first normal line at each point of C is included

in the plane generated by the second normal lşne and the third normal line of C̃ at corresponding point

under ψ. Here ψ is a bijection from C to C̃. The curve C̃ is called the generalized Mannheim mate curve

of C, [4].

Then, by the definition, a generalized Mannheim mate curve C̃ is given by the map x̃ : Ĩ −→ G4

such that

x̃(f(s)) = x(s) + α(s)e2(s), s ∈ Ĩ , (2.1)

where α is a smooth function on I. We remark that the parameter s generally is not an arc-length

parameter of C̃. Let s̃ be the arc-length of C̃ defined by

s̃ =

∫ s

0

∥∥∥∥
dx̃(s)

ds

∥∥∥∥ ds.

We can consider a smooth function f : I → Ĩ , given by f(s) = s̃. Then we have

f ′(s) =
√

1 + (α(s)τ(s))2 , s ∈ I, (2.2)

Theorem 2.1.([4, p.5]) Let C be a special Frenet-Serret curve in G4. If the curve α is a generalized

Mannheim curve, then the first curvature functions κ and second curvature functions τ of C satisfy the

equation
κ(s)

(τ(s))2
= const. = α, s ∈ I, (2.3)

where α is positive constant number.

Proof. Let C be a generalized Mannheim curve in G4 and C̃ be the generalized Mannheim mate

curve of C. Then we have from (2.1)

x̃(f(s)) = x(s) + α(s)e2(s).

Also,we can set

e2(s) = g(s)ẽ3(f(s)) + h(s)ẽ4(f(s)), (2.4)

for some smooth functions g and h on I.

If we differentiate both sides of this equation with respect to s, we get

f ′(s)ẽ1(f(s)) = e1(s) + α′(s)e2(s) + α(s)τ(s)e3(s). (2.5)

If we take the Galilean inner product both sides of (2.5) with e2(s) and considering (2.4), we obtain

that α is constant. If we consider this fact in (2.5), we get

ẽ1(f(s)) =
1

f ′(s)
e1(s) +

α(s)τ(s)

f ′(s)
e3(s), (2.6)
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where f ′(s) =
√

1 + (α(s)τ(s))2 for s ∈ I. By differentiation of (2.6) with respect to s, we have

f ′(s)κ̃(f(s))ẽ2(f(s)) =

(
1

f ′(s)

)
′

e1(s) +
κ(s) − α(τ(s))2

f ′(s)
e2(s) (2.7)

+

(
α(s)τ(s)

f ′(s)

)
′

e3(s) +
α(s)τ(s)σ(s)

f ′(s)
e4(s).

If we take the Galilean inner product both sides of (2.7) with e2(s) and considering (2.4), we obtain

α =
κ(s)

(τ(s))2

from α is constant, we have κ(s)
(τ(s))2 = const.Thus the proof is completed.

Theorem 2.2. Let C be a special Frenet-Serret curve in G4 whose curvature functions κ and τ are

non-constant functions and satisfy the equation κ(s) = α(τ(s))2, where s ∈ I and α is a positive number.

If the curve C̃ given by x̃(s) = x(s) + α.e2(s) is a special Frenet-Serret curve, then C is a generalized

Mannheim curve and C̃ is the generalized Mannheim mate curve of C.

Proof. Let s̃ be the arc-length of C̃. That is, s̃ is defined by

s̃ =

∫ s

0

∥∥∥∥
dx̃(s)

ds

∥∥∥∥ ds.

We can consider a smooth function function f : I → Ĩ , given by f(s) = s̃. Then we have

f ′(s) =
√

1 + (α(s)τ(s))2 ,

for s ∈ I. Also , from Theorem 2.1., we have

f ′(s) =
√

1 + α(s)κ(s). (2.8)

The representation of C̃ by arc-length parameter s̃ is denoted by x̃(s̃), then we can write

x̃(ŝ) = x̃(f(s)) = x(s) + α(s)e2(s),

for curve C̃. Thus we obtain

ẽ1(f(s)) =
1√

1 + α(s)κ(s)
e1(s) +

α(s)τ(s)√
1 + α(s)κ(s)

e3(s). (2.9)

Differentiating both side of the equation (2.9) with respect to s, then we have

f ′(s)κ̃(f(s))ẽ2(f(s)) =

(
1√

1 + α(s)κ(s)

)
′

e1(s) (2.10)

+

(
κ(s) − α(s)(τ(s))2√

1 + α(s)κ(s)

)
e2(s)

+

(
α(s)τ(s)√

1 + α(s)κ(s)

)
′

e3(s)
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+

(
α(s)τ(s)σ(s)√
1 + α(s)κ(s)

)
e4(s).

Under our assumption, that is, κ(s) − α(τ(s))2 = 0,we have that the coefficient of e2(s) in the equation

(2.10) vanishes. Thus , for each s ∈ I, the vector ẽ2(f(s)) is given by linear combination of e1(s), e3(s)

and e4(s). Also, from (2.9), the vector ẽ1(f(s)) is given by linear combination of e1(s) and e3(s). Since

the curve C̃ is a special Frenet-Serret curve in G4, the vector e2(s) is given by linear combination of

ẽ3(f(s)) and ẽ4(f(s)).

Therefore, the first normal line at each point of C is concluded in the plane generated the second

normal line and the third normal line of C̃ at corresponding point under the bijection ψ : C → C̃. This

completes the proof.

Theorem 2.3. Let C be a special Frenet-Serret curve in G4 such that its third curvature function σ

doesn’t vanish. The curvature functions κ and τ of C are constant functions if and only if there exists a

special Frenet-Serret curve C̃ in G4 such that the first normal line at each point of C is the third normal

line of C̃ at corresponding each point under a bijection ψ : C → C̃.

Proof. Let C be a special Frenet-Serret curve in G4 with the Frenet-Serret frame field {e1, e2, e3, e4}

and curvature functons κ, τ, σ. The first curvature function κ and the second curvature function τ of C

are positive constants. Thus α = κ(s)
(τ(s))2 is a positive constant number. We define a regular smooth curve

C̃ by

x̃ : I → G4

x̃(s) = x(s) + α.e2(s).

Let s̃ denote the arc-length parameter of C̃, and let f : I → Ĩ be a function defined by

ŝ = f(s) =
√

1 + (ατ)2s.

Then we have

f ′(s) =
√

1 + (ατ)2

and

ẽ1(f(s)) =
1√

1 + (ατ)2
e1(s) +

ατ√
1 + (ατ)2

e3(s).

Differentiating both sides of the last equation with respect to s we obtain

f ′(s)κ̃(f(s))ẽ2(f(s)) =
ατσ√

1 + (ατ)2
e4.

Thus, we have

κ̃(f(s)) =

∥∥∥∥
dẽ1(ŝ)

dŝ

∥∥∥∥ = signσ
ατσ

1 + (ατ)2
> 0

and

ẽ2(ŝ) = sign(σ)e4(s).
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After some calculations, we obtain following equations

τ̃ (f(s)) =
sign(σ)√
1 + (ατ)2

σ(s) > 0

ẽ3(f(s)) = −e3(s)

ẽ4(f(s)) = =
sign(σ)√
1 + (ατ)2

e2,

that means that, C̃ is a special Frenet-Serret curve in G4 and the first normal line at each point of C is

the third normal line of C̃ at corresponding each point under the bijection ψ : C → C̃.

Now, let C is be a special Frenet-Serret curve in G4 with the Frenet frame field and curvature

functions κ, τ and σ. Let C̃ is a special Frenet-Serret curve in G4with the Frenet frame field {ẽ1, ẽ2, ẽ3, ẽ4}

and curvature function κ̃, τ̃ and σ̃. We suppose that the first normal line at each point of C is the third

normal line of C̃ at corresponding each point under the bijection ψ : C → C̃. then the curve C̃ is

parametrized by

x̃(s) = x(s) + α.e2(s), s ∈ I. (2.11)

Let s̃ be the arc-length parameter of C̃ given by

s̃ = f(s) =

∫ s

0

√
1 + (α′(s))2 + (α(s)τ(s))2ds.

Thus our assumption imlies that

ẽ4 = ±e2(s).

Differentiating the equation (2.11)with respect to s, we have

f ′(s)ẽ1(f(s)) = e1(s) + α′(s)e2(s) + α(s)τ(s)e3(s).

Taking the inner product of f ′(s)ẽ1(f(s)) and ẽ4(f(s)), we obtain

f ′(s) =
√

1 + (α(s)τ(s))2 > 0

and

ẽ1(f(s)) =
1

f ′(s)
e1(s) +

α(s)τ(s)

f ′(s)
e3(s). (2.12)

We differentiate the equation (2.12) with respect to s, we have

f ′(s)κ̃(f(s))ẽ2(f(s)) =

(
1

f ′(s)

)
′

e1(s) +
κ(s) − α(τ(s))2

f ′(s)
e2(s)

+

(
α(s)τ(s)

f ′(s)

)
′

e3(s) +
α(s)τ(s)σ(s)

f ′(s)
e4(s). (2.13)

We know that

〈f ′(s)κ̃(f(s))ẽ2(f(s)), ẽ4(s)〉 = 0,

It holds that

κ(s) − α(τ(s))2 = 0,
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so that α is a positive constant number. By differentiation of the equation (2.13) with respect to s,we

have

(κ(s) − α(s)τ2(s))f ′′(s) + α(s)τ(s)τ ′(s)f ′(s) = 0.

And we know that, κ(s) − α(τ(s))2 = 0. Hence we obtain

α(s)τ(s)τ ′(s) = 0,

that means that , τ ′ = 0, that is τ = const. From the relation α(s) = κ(s)
τ2(s) , the curvature function κ is

positive constant too. Thus the proof is completed.

Theorem 2.4. Let C be a curve defined by

x(s) =

(
s, α

∫
(

∫
h(s) sin sds)ds, α

∫
(

∫
h(s) cos sds)ds, α

∫
(

∫
h(s)g(s)ds)ds

)
, s ∈ I,

where α is a positive constant number, g and h are any smooth functions: I → R, and f defined by

h(s) =
(gg′)2 + g2(g′)3

(1 + g(s))
9

2

,

for s ∈ I. Then the curvature functions κ and τ of the curve C satisfy

κ(s) − α(τ(s))2 = 0,

for each s ∈ I.

Proof. Considering the formula of curvature calculations in G4, the proof is can be done easily.
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