On the order equations of finite groups

Rulin Shen

Department of Mathematics, Hubei University for Nationalities, Enshi, Hubei, P. R. China
E-mail: shenrulin@hotmail.com

Abstract In this paper, we give definitions of the φ-element and φ-subgroup by the order equation of finite groups, then investigate some properties of the φ-subgroup.

Key Words φ-elements, φ-subgroup, Sylow subgroups

MSC 2010 20D05, 20D06

1 Introduction and Definition

The orders of elements of finite group G and numbers of the same order elements of G are very important for investigating the structure of group. Assume that $|G| = n$, it is well known that the order of element in G divides the order n of G. Thus by the partition of elements of same order we can obtain the order equation

$$n = s_0\varphi(1) + s_1\varphi(n_1) + \cdots + s_t\varphi(n_t),$$

where $s_0 = 1$ and $n_i|\|G|$, $s_i \geq 1$, φ is Euler totient function, $1 \leq i \leq t$. Clearly, if group G is isomorphic to \overline{G}, then their order equations are complete same, but the inverse of it is not true. For instance, the abelian group $Z_4 \times Z_4$ and the metacyclic group T, which $T = \langle a, b \rangle$ and has relations $a^4 = b^4 = 1, bab^{-1} = a^{-1}$, have the same order equation $16 = \varphi(1) + 3\varphi(2) + 6\varphi(4)$, obviously, $Z_4 \times Z_4$ is not isomorphic to T. In the following, the group G is always finite.

Definition. Assume that the order equation of group G is $|G| = 1 + s_1\varphi(n_1) + \cdots + s_t\varphi(n_t)$. If $s_i = 1$ in the order equation of group G, and order of element x is n_i, then called x a φ-element of G with order n_i. Denote the subgroup H is generated by $X = \{x|x$ is a φ-element of $G\}$, called H the φ-subgroup of G.

Clearly, the identity 1 is φ-element. By above definition, in the other words, the element x is a φ-element if and only if x satisfied the property: if $o(y) = o(x)$ for any other $y \in G$, then $\langle x \rangle = \langle y \rangle$.

Citation: Rulin Shen, On the order equations of finite groups, South Asian J Math, 2016, 6(1), 38-42.
2 Main results

Theorem 1. Suppose that \(H \) is the \(\varphi \)-subgroup of \(G \), then \(H \) is a cyclic characteristic subgroup and the generator of \(H \) is a \(\varphi \)-element.

Proof. Assume that \(H = \langle X \rangle = \langle x | x \varphi \rangle \) is \(\varphi \)-element of \(G \), it is easily shown that \(H \) is a characteristic subgroup of \(G \). Since, for every \(x \in X \) and any \(\alpha \in \text{Aut}(G) \), and \(\alpha \) preserve the order of elements, then we have \((x)\alpha = \langle x^\alpha \rangle = \langle x \rangle \). In the following we will show that \(H \) is cyclic. Let \(p_1, p_2, \ldots, p_k \) be distinct primes such that
\[
\{p_1, p_2, \ldots, p_k\} = \{p | p \text{ is prime divisor of the order of some } x \in X\}
\]

Then \(o(x) = p_1^{e_1(x)}p_2^{e_2(x)} \cdots p_k^{e_k(x)} \) for each \(x \in X \).

Let \(x, y \in X \). Then we may write \(x = x_1x_2 \cdots x_k \) and \(y = y_1y_2 \cdots y_k \) such that \(o(x_i) = p_i^{e_i} \) and \(o(y_i) = p_i^{f_i} \) for \(1 \leq i \leq k \). Since \(\langle x \rangle \leq G \) and \(\langle y \rangle \leq G \), we have \(\langle x_i \rangle \leq G \) and \(\langle y_i \rangle \leq G \). Furthermore, \(\langle x_i, x_j \rangle = \langle x_i \rangle \times \langle x_j \rangle \), \(\langle y_i, y_j \rangle = \langle y_i \rangle \times \langle y_j \rangle \), and \(\langle x_i, y_j \rangle = \langle x_i \rangle \times \langle y_j \rangle \) for \(i \neq j \). Clearly, either \(e_i \leq f_i \) or \(f_i \leq e_i \) for each \(i \), without loss of generality, we assume that \(e_i \leq f_i \) for some \(i \). Then \(x' = x_1x_2 \cdots x_{i-1}y_i^{p_i^{j-i}}x_i+1 \cdots x_k \) has order \(o(x) \). In fact
\[
o(x^{p_i^{j-i}}) = \frac{o(y_i)}{o(x_i)} = \frac{p_i^{j-i}}{p_i^{j-i}} = p_i^{e_i} = o(x_i)
\]

Denote \(y_i^{p_i^{j-i}} \) by \(g_i \), since \(\langle y_i \rangle < G \), it also \(g_i \leq G \), but \((o(x_i), o(g_i)) = 1(i \neq j) \), we have \(\langle x_i \rangle \cap \langle g_i \rangle = 1 \), so that \(x_jg_ix_j^{-1}g_i^{-1} = (x_jg_jx_j^{-1}g_i^{-1})x_j = x_jg_jx_j^{-1}g_i \in \{x_j \} \cap \{g_i \} = 1 \), hence \(x_jg_i = g_ix_j \), it implies that \(y_i^{p_i^{j-i}} \) commutes with every one of \(x_1, \ldots, x_i, x_{i+1}, \ldots, x_k \), thus \(o(x') = o(x) \). Obviously, since \(x \) is \(\varphi \)-element, hence \(\langle x' \rangle = \langle x \rangle \). It follows that \(\langle x_i \rangle = \langle y_i^{p_i^{j-i}} \rangle \) and so \(x_i \in \langle y \rangle \). Duplicate the above calculation, finally, it implies that
\[
\langle x, y \rangle = \langle x_{i_1} \rangle \times \langle x_{i_2} \rangle \times \cdots \times \langle x_{i_t} \rangle \times \langle y_{i_{t+1}} \rangle \times \cdots \times \langle y_{i_k} \rangle
\]

where \(i_1, \ldots, i_k \) is a permutation of \(1, 2, \ldots, k \) such that \(e_{i_t} \geq f_{i_t} \) for \(1 \leq t \leq l \) and \(e_{i_t} < f_{i_t} \) for \(l+1 \leq t \leq k \). The above argument implies that \(H \cong Z_{p_1} \times \cdots \times Z_{p_k} \). Thus \(H \) is cyclic. Clearly, \(|H| = p_1^{e_1}p_2^{e_2} \cdots p_k^{e_k} \). Suppose that \(H = \langle h \rangle \), if \(g \in G \) and \(o(g) = o(h) = |H| \), since \(o(x) = p_1^{e_1(x)}p_2^{e_2(x)}p_k^{e_k(x)} \) for all \(x \in X \) and
\[
o(g^{p_1^{m_1-e_1(x)}p_2^{m_2-e_2(x)} \cdots p_k^{m_k-e_k(x)}}) = o(x),
\]

hence \(x \in \langle g \rangle \), then \(\langle X \rangle \leq \langle g \rangle \), that is \(H \leq \langle g \rangle \), but \(|H| = |\langle g \rangle| \), so that \(\langle g \rangle = H = \langle h \rangle \). Thus \(g \) is the \(\varphi \)-element. \[\square \]

Note that the converse of the theorem is not true, the elementary abelian \(p \)-group is an example. By above if \(a, b \) are both \(\varphi \)-elements and their orders are not equal, then \(ab = ba \) and \(ab \) is also a \(\varphi \)-elements. Conversely, if \(x \) is \(\varphi \)-element with order \(o(x) \) and \(d | o(x) \), then the \(\varphi \)-element with order \(d \) maybe not exist. For instance, the dihedral group \(D_{12} \), the order equation is \(12 = \varphi(1) + 7\varphi(2) + \varphi(3) + \varphi(6) \). Clearly, \(2|6 \), while there is not the \(\varphi \)-element with order \(2 \). Furthermore, the order of \(ab \) of \(\varphi \)-elements \(a \) and \(b \) is the least common multiple \([o(a), o(b)] \) of them. If consider the construct of \(\varphi \)-elements in abelian group \(G \), then we obtain the following result:
Theorem 2. Let G be an abelian group, then the following conditions are equivalent mutually

1. There exists a φ-element with order m.
2. Let m_1, m_2, \ldots, m_t be the invariant factors of G, then $(m, m_i) = 1$ for $1 \leq i \leq t - 1$.
3. Let π be the set of prime divisors of m, then G has a cyclic π-Hall subgroup.
4. G has the unique cyclic subgroup of order m.

Proof. (1) \Rightarrow (2). Since G is abelian, we may write $G \cong Z_{m_1} \times Z_{m_2} \times \cdots \times Z_{m_t}$ and $m_i | m_{i+1}$ for $1 \leq i \leq t - 1$, and suppose that $m_1 = p_1^{e_1} s_1, m_2 = p_1^{e_1} s_2, \ldots, m_t = p_1^{e_1} s_t$ for $e_1 \leq e_2 \leq \cdots \leq e_t$. Denote $f(n)$ by the total number of order n's elements in G and, by the set $\{x | G: x^n = 1\}$, obviously $f(1) = 1$ and, we have $f(pq) = f(p)f(q)$ for $(p, q) = 1$. In fact, we may assume p and q are both primes, then $pG = \{g^p | g \in G\}$ is a subgroup of G and, furthermore, either $p^s (Z_{p^s} \times Z_{q^s}) \cong p^s Z_{p^s} \times p^s Z_{q^s}$, e_{ij} with $1 \leq i \leq t - 1$ and $1 \leq j \leq k$. For $e_{ij} < s(i+1)$, $1 \leq i \leq t - 1$ and $1 \leq j \leq k$. Denote $f(n)$ by the total number of order n's elements in G and, by $E(n)$ the set $\{x | G: x^n = 1\}$, obviously $f(1) = 1$ and, we have $f(pq) = f(p)f(q)$ for $(p, q) = 1$. Thus $f(p^n) = \frac{|G|}{|p^n|} - f(p^n - 1)$ for $s \geq 1$. Applying the same way above and $E(p^n) \cap E(q^n) = 1$, we have $f(p^n q^n) = f(p^n)f(q^n)$. Therefore if p, q are not prime, then $(p, q) = 1$, the formula is also right. Now we assume $m = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$. Then $f(m) = f(p_1^{e_1})f(p_2^{e_2})\cdots f(p_t^{e_t})$. In the following we discuss $f(p_i^{e_i})$ with $s_i \neq 0$ by different cases.

Case 1: If $e_{i+1} = s_i < e_{i+1}$ for $1 < i < t$, then $e_{i+1} \leq s_i - 1 < e_{i+1}$. Thus

$$f(p_i^{e_i}) = p_i^{e_i + (s_i - 1)} - p_i^{e_i + e_{i+1}} = p_i^{e_i + s_i + (t - 1)s_i - 1}.$$
Thus if \(f(p_i^{e_i}) = p_i^{s_i-1}(p_i - 1) \), then \(t = 1 \). We get the result that if there is order \(p_i^{e_i} \) \(\phi \)-element, then \(e_1 = e_2 = \cdots = e_{(t-1)i} = 0 \) from above. That is, it is only \(e_1 \neq 0 \). Consequently, \((m, m_i) = 1 \) for \(1 \leq i \leq t - 1 \).

(2) \(\Rightarrow \)(3). Assumed that \(m = p_1^{m_1}p_2^{m_2} \cdots p_k^{m_k} \), clearly, \(m||G| \), without loss of generality, we can let \(e_j > 0 \) for \(1 \leq j \leq k' \) and \(k' \leq k \), then \(\pi = \{p_1, p_2, \cdots, p_{k'}\} \). Since \((m, m_i) = 1 \), so \(e_{ij} = 0 \) for \(1 \leq i \leq t - 1 \), and thus the \(\pi \)-Hall subgroup \(H \) of \(G \) is isomorphic to \(Z_{p_1^{e_1}} \times Z_{p_2^{e_2}} \times \cdots \times Z_{p_{k'}^{e_{k'}}} \). Therefore, it is cyclic.

(3) \(\Rightarrow \)(4). Obviously, \(m|||H| \), thus there is unique cyclic subgroup \(H_m \) of order \(m \) in \(H \). If there exists other subgroup \(H'_m \) with order \(m \) of \(G \), then \(H'_m \leq H_m \) since \(\pi \)-Hall subgroup \(H \) is unique by \(G \)'s commutativity.

(4) \(\Rightarrow \)(1). Supposed that \(H_m \) is unique cyclic subgroup with order \(m \). Then there is an element \(x \) such that \(o(x) = m \). If \(o(y) = m \) for any other \(y \in G \), clearly, \(\langle x \rangle = \langle y \rangle \). So that element \(x \) is the \(\phi \)-element of order \(m \).

By the theorem above, we know that commutative \(p \)-group which is not cyclic has only a \(\phi \)-element 1. If \(p \) is any prime factor of \(|G| \) in abelian group \(G \), \(p|m \) and there is order \(m \)'s \(\phi \)-element, then \(G \) is cyclic group. Also assume \(H \) is the hole of abelian group \(G \), and \(m_1, m_2, \cdots, m_t \) is invariant factor of \(G \), it is easily to check that \(G/H \cong |H|/(Z_{m_1} \times Z_{m_2} \times \cdots \times Z_{m_t}) \). Consider the existence of \(\phi \)-element in general groups, we have obtained a sufficient condition.

Theorem 3. Assume that the Hall subgroup \(H \) of \(G \) is cyclic normal, then the generated elements of \(H \) are \(\phi \)-elements.

Proof. Supposed that \(H = \langle a \rangle \) and \(o(a) = m(m > 0) \). Since \(H \) is a Hall subgroup, so \((m, |G:H|) = 1 \). Now if there is other element \(x \in G \) such that \(o(x) = o(a) = m \), then \(x \in H \). In fact, let \(|G:H| = l \), then \(x^m = 1 \) and \((xH)^l = H \) since \(H \leq G \). Thus it imply \(x^l \in H \) by \(x^lH = H \). By above \((m, l) = 1 \), there exist integers \(r, s \) such that \(rm + sl = 1 \), so \(x = x^1 = x^{rm+sl} = (x^m)^r(x^l)^s \in H \).

Therefore, the generated elements of \(H \) are \(\phi \)-elements. □

Above we give a necessary condition, but what is the equivalent condition of \(\phi \)-subgroup in finite groups? it need us to further study. In the following, we discuss the relations between hole and Sylow subgroup, and give an equivalent condition which \(p \)-element become a \(\phi \)-element.

Theorem 4. Let \(p \) be a prime divisor of \(|G| \). Then \(x \) is a \(p \)-element and \(\phi \)-element if and only if \(x \in H_{P_1} \cap H_{P_2} \cap \cdots \cap H_{P_l} \), where \(H_{P_i} \) denote the \(\phi \)-subgroup of the Sylow \(p \)-subgroup \(P_i \) of \(G \) for \(i = 1, 2, \cdots, l \).

Proof. Let \(x \) be a \(\phi \)-element and \(p \)-element. Then \(x \) must be in some Sylow \(p \) subgroup \(P_m \), where \(m \) is chosen in the set \(\{1, 2, \cdots, l\} \). Obviously, \(x \) is also \(\phi \)-element of group \(P_m \), that is, \(x \in H_{P_m} \). Now
assume that \(y \in G \) and \(o(y) = o(x) \), but \(P_1, P_2, \ldots, P_l \) are relative conjugacy because of Sylow subgroups, and \(P_1 \cong P_2 \cong \cdots \cong P_l \), so there exists \(x_i \in P_i(i \neq m) \) such that \(o(x_i) = o(x) \). Thus we have \(\langle x_i \rangle = \langle x \rangle \), it is forced to \(x \in P_i, i = 1, 2, \ldots, l \). Therefore, \(x \in H_{P_1} \cap H_{P_2} \cap \cdots \cap H_{P_l} \).

Conversely, if \(x \in H_{P_1} \cap H_{P_2} \cap \cdots \cap H_{P_l} \), clearly, \(x \in H_{P_i}(i = 1, 2, \cdots, l) \). Let \(y \in G \) and \(o(y) = o(x) \), then \(y \) be in some Sylow \(p \) subgroup \(P_{l'}(1 \leq l' \leq l) \), but \(x \in P_{l'} \), thus we have \(\langle x \rangle = \langle y \rangle \). Consequently, \(x \) is a \(\varphi \)-element of \(G \).

This theorem tell us that, if \(p \)-element \(x \) is \(\varphi \)-element then the \(x \) is determined by the \(\varphi \)-subgroups of its Sylow \(p \)-subgroups completely. If Sylow \(p \)-subgroup \(P \) of \(G \) is unique, Obviously, \(\varphi \)-elements of \(P \) is also one of \(G \) by above. Note that not all \(\varphi \)-elements of the group \(G \) are determined by the \(\varphi \)-subgroup of Sylow subgroups of \(G \). For instance, the Dihedral group \(D_{12} = \langle a, b \rangle \) with relations \(a^6 = 1, b^2 = 1, abab = 1 \) has the \(\varphi \)-element \(a \) with order 6, but there is unique Sylow 2-subgroup \(P_2 \cong Z_2 \times Z_2 \) and Sylow 3-subgroup \(P_3 \cong Z_3 \) in \(D_{12} \). Clearly the \(\varphi \)-subgroup of \(P_2 \) is the trivial and one of \(P_3 \) is isomorphic to \(Z_3 \), so that the \(\varphi \)-element \(a \) is not characterized by Sylow subgroups. Further, how to characterize the \(\varphi \)-element which is not \(p \)-element, it is an interesting problem. But if the \(G \) is solvable, we know that \(\pi \)-Hall subgroup must exist and mutually conjugate, and every \(\pi \)-element must belong to some \(\pi \)-Hall subgroup. Using same method of proof in Theorem 4, we may get the following theorem.

Theorem 5. Assume that \(G \) is solvable, and let \(H = \langle x \rangle \) be the \(\varphi \)-subgroup of \(G \) and \(o(x) = m \). Let \(\pi \) be the set of all prime divisor of \(m \). Then \(x \) is a \(\varphi \)-element if and only if \(x \in H_{Q_1} \cap H_{Q_2} \cap \cdots \cap H_{Q_l} \), where \(H_{Q_i} \) is the \(\varphi \)-subgroup of a \(\pi \)-Hall subgroup \(Q_i \) of \(G \) for \(i = 1, 2, \cdots, l \).

References