Operators on multiset bitopological spaces

S. A. El-Sheikh ${ }^{\oplus}$, R. A-K. Omar ${ }^{\oplus}$, M. Raafat ${ }^{\text {® }}$
(1) Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt
E-mail: dr_mahmoudraafat2011@yahoo.com
Received: Oct-18-2015; Accepted: Dec-26-2015 *Corresponding author

Abstract

The main purpose of this paper is to introduce and study some operators on multiset bitopological spaces such as $M P^{*}$-closure, $M P^{*}$-interior and $M P^{*}$-boundary. Also, their properties are presented in detail. Moreover, the concept of $M P^{*}$-continuous function is introduced in multiset bitopological spaces.

Key Words Mset, Multiset bitopological space, $M P^{*}$-closure, $M P^{*}$-interior and $M P^{*}$-boundary MSC 2010 54A05, 54B05

1 Introduction

The notion of a multiset is well established both in mathematics and computer science $[1,2,8$, $15,17,19]$. In mathematics, a multiset is considered to be the generalization of a set. In classical set theory, a set is a well-defined collection of distinct objects. If repeated occurrences of any object are allowed in a set, then a mathematical structure, that is known as multiset (mset, for short), is obtained $[3,9,16,18,21]$. For the sake of convenience an mset is written as $\left\{k_{1} / x_{1}, k_{2} / x_{2}, \ldots, k_{n} / x_{n}\right\}$ in which the element x_{i} occurs k_{i} times. We observe that each multiplicity k_{i} is a positive integer. The number of occurrences of an object x in an mset A, which is finite in most of the studies that involve msets, is called its multiplicity or characteristic value, usually denoted by $m_{A}(x)$ or $C_{A}(x)$ or simply by $A(x)$. One of the most natural and simplest examples is the mset of prime factors of a positive integer n. The number 504 has the factorization $504=2^{3} 3^{2} 7^{1}$ which gives the mset $X=\{3 / 2,2 / 3,1 / 7\}$ where $C_{X}(2)=3$, $C_{X}(3)=2, C_{X}(7)=1$. Jena et. al. [10] studied the concept of bags and some properties and results about this concept. Girish et. al. [6] presented mset topologies induced by mset relations and studied the concepts of closure operator, interior operator and neighborhood operator on mset. In 2012 Girish et. al. [7] studied the notions of basis, sub-basis, closed sets, closure, interior and continuous mset function.

A bitopological space (X, τ_{1}, τ_{2}) was introduced by Kelly [11] in 1963, as a method of generalizes topological spaces (X, τ). Every bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ can be regarded as a topological space (X, τ) if $\tau_{1}=\tau_{2}=\tau$. Furthermore, he extended some of the standard results of separation axioms and
mappings in a topological space to a bitopological space. The notion of connectedness in bitopological spaces has been studied by Pervin [13], Reily [14] and Swart [20]. In 2015, El-Sheikh et. al. [5] introduced initially the concept of multiset bitopological spaces and they presented some properties and results about this concept. In addition, they defined the notion of $i j$-operators on multiset bitopological spaces and studied the relationships among them.

In this paper, we firstly introduced some operators on multiset bitopological spaces such as $M P^{*}$ closure, $M P^{*}$-interior and $M P^{*}$-boundary. Additionally, their properties are presented in detail. Moreover, there exist many of deviations between multiset bitopological spaces and the previous work [4]. Finally, the concept of $M P^{*}$-continuous function is presented in multiset bitopological spaces.

2 Preliminaries

Definition 2.1. [10] An mset X drawn from the set U is represented by a count function X or C_{X} defined as $C_{X}: U \rightarrow N$, where N represents the set of non-negative integers.

Here $C_{X}(\mathrm{x})$ is the number of occurrences of the element x in the mset X. We present the mset X drawn from the set $U=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ as $X=\left\{m_{1} / x_{1}, m_{2} / x_{2}, m_{3} / x_{3}, \ldots, m_{n} / x_{n}\right\}$ where m_{i} is the number of occurrences of the element $x_{i}, i=1,2,3, \ldots, n$ in the mset X.

Definition 2.2. [10] A domain U, is defined as a set of elements from which msets are constructed. The mset space $[U]^{w}$ is the set of all msets whose elements are in U such that no element in the mset occurs more than w times.

The mset space $[U]^{\infty}$ is the set of all msets over a domain U such that there is no limit on the number of occurrences of an element in a mset. If $U=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, then $[U]^{w}=\left\{\left\{m_{1} / x_{1}, m_{2} / x_{2}, \ldots, m_{k} / x_{k}\right\}\right.$: for $\left.i=1,2, \ldots, k ; m_{i} \in\{0,1,2, \ldots, w\}\right\}$.

Definition 2.3. [10] Let X and Y be two msets drawn from a set U. Then,

1. $X=Y$ if $C_{X}(x)=C_{Y}(x)$ for all $x \in U$,
2. $X \subseteq Y$ if $C_{X}(x) \leqslant C_{Y}(x)$ for all $x \in U$,
3. $P=X \cup Y$ if $C_{P}(x)=\operatorname{Max}\left\{C_{X}(x), C_{Y}(x)\right\}$ for all $x \in U$,
4. $P=X \cap Y$ if $C_{P}(x)=\operatorname{Min}\left\{C_{X}(x), C_{Y}(x)\right\}$ for all $x \in U$,
5. $P=X \oplus Y$ if $C_{P}(x)=\operatorname{Min}\left\{C_{X}(x)+C_{Y}(x), w\right\}$ for all $x \in U$,
6. $P=X \ominus Y$ if $C_{P}(x)=\operatorname{Max}\left\{C_{X}(x)-C_{Y}(x), 0\right\}$ for all $x \in U$, where \oplus and \ominus represent mset addition and mset subtraction respectively.

Definition 2.4. [10] Let X be a mset drawn from the set U. If $C_{X}(x)=0 \forall x \in U$, then X is called an empty mset and denoted by ϕ, i.e., $\phi(x)=0 \forall x$.

If X is an ordinary set with n distinct elements, then the power set $P(X)$ of X contains exactly 2^{n} elements. If X is a mset with n elements (repetitions counted), then the power set $P(X)$ contains strictly less than 2^{n} elements because singleton submsets do not repeat in $P(X)$. In classical set theory, Cantor's power set theorem fails for msets. It is possible to formulate the following reasonable definition of a power mset of X for finite mset X that preserves Cantor's power set theorem.

Definition 2.5. [1] (Power Mset) Let $X \in[U]^{w}$ be a mset. Then, the power mset $P(X)$ of X is the set of all submsets of X. We have $Y \in P(X)$ if and only if $Y \subseteq X$. If $Y=\phi$, then $Y \in{ }^{1} P(X)$; and if $Y \neq \phi$, then $Y \in{ }^{k} P(X)$ where $k=\prod_{z}\binom{\left|[X]_{z}\right|}{\left|[Y]_{z}\right|}$, the product \prod_{z} is taken over by distinct elements of z of the mset Y and $\left|[X]_{z}\right|=m$ iff $z \in^{m} X,\left|[Y]_{z}\right|=n$ iff $z \in^{n} Y$, then $\binom{\left|[X]_{z}\right|}{\left|[Y]_{z}\right|}=\binom{m}{n}=\frac{m!}{n!(m-n)!}$.

The power set of a mset is the support set of the power mset and is denoted by $P^{*}(X)$. The following theorem was showed the cardinality of the power set of a mset.

Theorem 2.6. [18] Let $P(X)$ be a power mset whose members drawn from the mset $X=\left\{m_{1} / x_{1}, m_{2} / x_{2}, \ldots, m_{n} / x_{n}\right\}$ and $P^{*}(X)$ be the power set of a mset X. Then, $\operatorname{Card}\left(P^{*}(X)\right)=\Pi_{i=1}^{n}$ $\left(1+m_{i}\right)$.

Definition 2.7. [6] Let $X \in[U]^{w}$ and $\tau \subseteq P^{*}(X)$. Then, τ is called a multiset topology (for short, M-topology) of X if τ satisfies the following properties:

1. the mset X and the empty mset ϕ are in τ,
2. the mset union of the elements of any subcollection of τ is in τ,
3. the mset intersection of the elements of any finite subcollection of τ is in τ.

Hence, (X, τ) is called an M-topological space. Each element in τ is called an open mset. Additionally, $O M(X)$ is the set of all open submsets of X.

Definition 2.8. [7] Let (X, τ) be a M-topological space and Y be a submset of X. The collection $\tau_{Y}=$ $\left\{G^{\prime}=Y \cap G ; G \in \tau\right\}$ is a M-topology on Y, called the subspace M-topology.

Remark 2.9. [7] The complement of any submset Y in a mset topological space (X, τ) is defined by : $Y^{c}=X \ominus Y$.

Definition 2.10. [7] A submset Y of a M-topological space X is said to be closed if the mset $X \ominus Y$ is open.

Definition 2.11. [7] Let A be a submset of an M-topological space (X, τ). Then,

1. the interior of A is defined as the union of all open msets contained in A and denoted by $\operatorname{int}(A)$, i.e., $\operatorname{int}(A)=\cup\{G \subseteq X: G$ is an open mset and $G \subseteq A\}$
and $C_{\text {int }(A)}(x)=\max \left\{C_{G}(x): G \in \tau, G \subseteq A\right\}$,
2. the closure of A is defined as the intersection of all closed msets containing A and denoted by $\operatorname{cl}(A)$, i.e., $\operatorname{cl}(A)=\cap\{K \subseteq X: K$ is a closed mset and $A \subseteq K\}$ and $C_{c l(A)}(x)=\min \left\{C_{K}(x): K \in \tau^{c}, A \subseteq K\right\}$.

Proposition 2.12. [6, 7] If (X, τ) is a M-topological space and A, B are two submsets of X. Then, the following properties are satisfied:

- $\operatorname{int}\left(A^{c}\right)=(c l(A))^{c}$.
- $\operatorname{cl}\left(A^{c}\right)=(\operatorname{int}(A))^{c}$.
- $\operatorname{cl}(A \cup B)=\operatorname{cl}(A) \cup \operatorname{cl}(B)$.
- $\operatorname{int}(A \cap B)=\operatorname{int}(A) \cap \operatorname{int}(B)$.

Definition 2.13. [12] The boundary of a submset A of X is the intersection of closure of A and closure of the complement of A. It is denoted by $b(A)$ and defined as $b(A)=\operatorname{cl}(A) \cap c l\left(A^{c}\right)$.

Definition 2.14. [5] A multiset bitopological space is a triple (X, τ_{1}, τ_{2}) where X is a non-empty mset and τ_{1}, τ_{2} are arbitrary M-topologies on X.

Definition 2.15. [5] Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a multiset bitopological space over X and Y be a non-empty submset of X. Then, $\tau_{1}^{Y}=\left\{Y \cap F: F \in \tau_{1}\right\}$ and $\tau_{2}^{Y}=\left\{Y \cap G: G \in \tau_{2}\right\}$ are said to be the relative M-topologies on Y. Also, $\left(Y, \tau_{1}^{Y}, \tau_{2}^{Y}\right)$ is called a relative multiset bitopological subspace of $\left(X, \tau_{1}, \tau_{2}\right)$.

3 Operators on multiset bitopological spaces

In this section, some operators on multiset bitopological spaces are introduced such as $M P^{*}$-closure, $M P^{*}$-interior and $M P^{*}$-boundary. Further, their properties are presented. Moreover, the concept of $M P^{*}$-continuous function is studied.

Definition 3.1. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a multiset bitopological space. Then, the following operators are defined as:

1. an $M P^{*}$-closure operator $c l_{\tau^{*}}: P^{*}(X) \rightarrow P^{*}(X)$ is defined by:
$c l_{\tau^{*}}(A)=c l_{\tau_{1}}(A) \cap c l_{\tau_{2}}(A)$, where $A \in P^{*}(X)$ and $P^{*}(X)$ is the support set of the power mset of X,
2. an $M P^{*}$-interior operator $i n t_{\tau^{*}}: P^{*}(X) \rightarrow P^{*}(X)$ is established by: $\operatorname{int}_{\tau^{*}}(A)=\operatorname{int}_{\tau_{1}}(A) \cup i n t_{\tau_{2}}(A)$, where $A \in P^{*}(X)$ and $\tau^{*}=\left\{A \subseteq X: \operatorname{int}_{\tau^{*}}(A)=A\right\}$,
3. an $M P^{*}$-boundary operator $b_{\tau^{*}}: P^{*}(X) \rightarrow P^{*}(X)$ is described by:
$b_{\tau^{*}}(A)=b_{\tau_{1}}(A) \cap b_{\tau_{2}}(A)=c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}\left(A^{c}\right)$, where $A \in P^{*}(X)$.
Remark 3.2. Clearly from the above definition, τ^{*} is a supra M-topological space because a finite intersection of members of τ^{*} may not be a member of τ^{*} as shown in the following example.

Example 3.3. Let $X=\{3 / a, 2 / b, 1 / c\}$ be an mset and $\tau_{1}=\{X, \phi,\{3 / a\},\{2 / b, 1 / c\}\}, \tau_{2}=\{X, \phi,\{2 / b\}$, $\{3 / a, 1 / c\}\}$. Therefore,
$\tau^{*}=\{X, \phi,\{3 / a\},\{2 / b\},\{3 / a, 2 / b\},\{3 / a, 1 / c\},\{2 / b, 1 / c\}\}$. Assume that $A=\{3 / a, 1 / c\}, B=\{2 / b, 1 / c\}$. Then, $A, B \in \tau^{*}$. But, $A \cap B=\{1 / c\} \notin \tau^{*}$.

Theorem 3.4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a multiset bitopological space. Then, $M P^{*}$-closure operator has the following properties:

1. $A \subseteq c l_{\tau^{*}}(A) \forall A \in P^{*}(X)$,
2. if $A \subseteq B$, then $c l_{\tau^{*}}(A) \subseteq c l_{\tau^{*}}(B) \forall A, B \in P^{*}(X)$,
3. $c l_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right)=c l_{\tau^{*}}(A)$,
4. $c l_{\tau^{*}}(A \cup B) \supseteq c l_{\tau^{*}}(A) \cup c l_{\tau^{*}}(B)$,
5. $c l_{\tau^{*}}(A \cap B) \subseteq c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}(B)$,
6. $c l_{\tau^{*}}(\phi)=\phi$ and $c l_{\tau^{*}}(X)=X$,
7. $\left(\operatorname{int}_{\tau^{*}}(A)\right)^{c}=\operatorname{cl}_{\tau^{*}}\left(A^{c}\right)$, where A^{c} is the complement of A with respect to the mset X,
8. $A \in \tau^{* c}$ if and only if $c l_{\tau^{*}}(A)=A$, where $\tau^{* c}$ is the family of τ^{*}-closed submsets of X.

Proof.

1. Since, $\operatorname{cl}_{\tau^{*}}(A)=c l_{\tau_{1}}(A) \cap c l_{\tau_{2}}(A), A \subseteq c l_{\tau_{1}}(A)$ and $A \subseteq \operatorname{cl}_{\tau_{2}}(A)$. Then, $A \subseteq \operatorname{cl}_{\tau_{1}}(A) \cap c l_{\tau_{2}}(A)=$ $c l_{\tau^{*}}(A)$.
2. Let $A \subseteq B$. Then, $c l_{\tau_{i}}(A) \subseteq c l_{\tau_{i}}(B)$ where $i=1,2$. Therefore, $c l_{\tau_{1}}(A) \cap c l_{\tau_{2}}(A) \subseteq c l_{\tau_{1}}(B) \cap c l_{\tau_{2}}(B)$. Thus, $c l_{\tau^{*}}(A) \subseteq c l_{\tau^{*}}(B)$.
3. Since, $c l_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right)=c l_{\tau_{1}}\left(c l_{\tau_{1}}(A) \cap c l_{\tau_{2}}(A)\right) \cap c l_{\tau_{2}}\left(c l_{\tau_{1}}(A) \cap c l_{\tau_{2}}(A)\right)$.

Then, $c l_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right) \subseteq\left(c l_{\tau_{1}}\left(c l_{\tau_{1}}(A)\right) \cap c l_{\tau_{1}}\left(c l_{\tau_{2}}(A)\right)\right) \cap\left(c l_{\tau_{2}}\left(c l_{\tau_{1}}(A)\right) \cap c l_{\tau_{2}}\left(c l_{\tau_{2}}(A)\right)\right)$.
Therefore, $c l_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right) \subseteq\left(c l_{\tau_{1}}(A) \cap c l_{\tau_{1}}\left(c l_{\tau_{2}}(A)\right)\right) \cap\left(c l_{\tau_{2}}\left(c l_{\tau_{1}}(A)\right) \cap c l_{\tau_{2}}(A)\right)$.
Hence, $c l_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right) \subseteq c l_{\tau_{1}}(A) \cap c l_{\tau_{2}}(A)$. This implies that $c l_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right) \subseteq c l_{\tau^{*}}(A)$. Conversely, from part (1) we have $A \subseteq c l_{\tau^{*}}(A)$. Then, $c l_{\tau^{*}}(A) \subseteq c l_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right)$ by part (2). Thus, $c l_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right)=$ $c l_{\tau^{*}}(A)$.
4. Since, $A, B \subseteq A \cup B$. Then, $c l_{\tau^{*}}(A) \subseteq c l_{\tau^{*}}(A \cup B)$ and $c l_{\tau^{*}}(B) \subseteq c l_{\tau^{*}}(A \cup B)$ from part (2). Thus, $c l_{\tau^{*}}(A) \cup c l_{\tau^{*}}(B) \subseteq c l_{\tau^{*}}(A \cup B)$.
5. Since, $A \cap B \subseteq A, B$. Then, $c l_{\tau^{*}}(A \cap B) \subseteq c l_{\tau^{*}}(A)$ and $c l_{\tau^{*}}(A \cap B) \subseteq c l_{\tau^{*}}(B)$ from part (2). Thus, $c l_{\tau^{*}}(A \cap B) \subseteq c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}(B)$.
6. Clear.
7. Since, $\left(\operatorname{int}_{\tau^{*}}(A)\right)^{c}=\left(\operatorname{int}_{\tau_{1}}(A) \cup \operatorname{int}_{\tau_{2}}(A)\right)^{c}$. Then, $\left(\operatorname{int}_{\tau^{*}}(A)\right)^{c}=\left(\operatorname{int}_{\tau_{1}}(A)\right)^{c} \cap\left(\text { int }_{\tau_{2}}(A)\right)^{c}$. Therefore, $\left(\operatorname{int}_{\tau^{*}}(A)\right)^{c}=\left(c l_{\tau_{1}}\left(A^{c}\right)\right) \cap\left(c l_{\tau_{2}}\left(A^{c}\right)\right)$. Hence, $\left(\operatorname{int}_{\tau^{*}}(A)\right)^{c}=c l_{\tau^{*}}\left(A^{c}\right)$.
8. Immediate by using part (7).

Remark 3.5. In multiset bitopological space $\left(X, \tau_{1}, \tau_{2}\right), c l_{\tau^{*}}(A \cup B) \neq c l_{\tau^{*}}(A) \cup c l_{\tau^{*}}(B)$ in general as shown in the following example.

Example 3.6. From Example 3.3, Let $A=\{2 / a\}, B=\{1 / b\}$. Then, $c l_{\tau^{*}}(A)=\{3 / a\}, c l_{\tau^{*}}(B)=\{2 / b\}$, but $c l_{\tau^{*}}(A \cup B)=X$. Hence, $c l_{\tau^{*}}(A \cup B) \neq c l_{\tau^{*}}(A) \cup c l_{\tau^{*}}(B)$.

Theorem 3.7. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a multiset bitopological space. Then, $M P^{*}$-interior operator has the following properties:

1. $\operatorname{int}_{\tau^{*}}(A) \subseteq A \forall A \in P^{*}(X)$,
2. if $A \subseteq B$, then int $\tau_{\tau^{*}}(A) \subseteq \operatorname{int}_{\tau^{*}}(B) \forall A, B \in P^{*}(X)$,
3. $\operatorname{int}_{\tau^{*}}\left(\operatorname{int}_{\tau^{*}}(A)\right)=i n t_{\tau^{*}}(A)$,
4. $\operatorname{int}_{\tau^{*}}(\phi)=\phi$ and $\operatorname{int}_{\tau^{*}}(X)=X$,
5. $\operatorname{int}_{\tau^{*}}(A \cap B) \subseteq i n t_{\tau^{*}}(A) \cap i n t_{\tau^{*}}(B)$,
6. $\operatorname{int}_{\tau^{*}}(A \cup B) \supseteq \operatorname{int}_{\tau^{*}}(A) \cup i n t_{\tau^{*}}(B)$.

Proof.

1. Since, $\operatorname{int}_{\tau^{*}}(A)=\operatorname{int}_{\tau_{1}}(A) \cup \operatorname{int}_{\tau_{2}}(A), \operatorname{int}_{\tau_{1}}(A) \subseteq A$ and $\operatorname{int}_{\tau_{2}}(A) \subseteq A$. Then, $\operatorname{int}_{\tau^{*}}(A) \subseteq A$.
2. Let $A \subseteq B$. Then, $\operatorname{int}_{\tau_{i}}(A) \subseteq \operatorname{int}_{\tau_{i}}(B)$ where $i=1,2$. Therefore, $\operatorname{int}_{\tau_{1}}(A) \cup \operatorname{int}_{\tau_{2}}(A) \subseteq \operatorname{int}_{\tau_{1}}(B) \cup$ $\operatorname{int}_{\tau_{2}}(B)$. Thus, int $_{\tau^{*}}(A) \subseteq \operatorname{int}_{\tau^{*}}(B)$.
3. Since, $\operatorname{int}_{\tau^{*}}\left(\operatorname{int}_{\tau^{*}}(A)\right)=\operatorname{int}_{\tau_{1}}\left(\operatorname{int}_{\tau_{1}}(A) \cup \operatorname{int}_{\tau_{2}}(A)\right) \cup \operatorname{int}_{\tau_{2}}\left(\operatorname{int}_{\tau_{1}}(A) \cup \operatorname{int}_{\tau_{2}}(A)\right)$.

Then, $\operatorname{int}_{\tau^{*}}\left(i n t_{\tau^{*}}(A)\right) \supseteq\left(i n t_{\tau_{1}}(A) \cup i n t_{\tau_{1}}\left(i n t_{\tau_{2}}(A)\right)\right) \cup\left(i n t_{\tau_{2}}\left(i n t_{\tau_{1}}(A)\right) \cup i n t_{\tau_{2}}(A)\right)$.
Therefore, $\operatorname{int}_{\tau^{*}}\left(\operatorname{int}_{\tau^{*}}(A)\right) \supseteq \operatorname{int}_{\tau_{1}}(A) \cup i n t_{\tau_{2}}(A)$.
Hence, int $_{\tau^{*}}\left(\right.$ int $\left._{\tau^{*}}(A)\right) \supseteq \operatorname{int}_{\tau^{*}}(A)$.
Conversely, from part (1) we have $\operatorname{int}_{\tau^{*}}(A) \subseteq A$. Then, int $_{\tau^{*}}\left(i n t_{\tau^{*}}(A)\right) \subseteq \operatorname{int}_{\tau^{*}}(A)$ by part (2). Thus, int $_{\tau^{*}}\left(i n t_{\tau^{*}}(A)\right)=i n t_{\tau^{*}}(A)$.
4. Clear.
5. Since, $A \cap B \subseteq A, B$. Then, $\operatorname{int}_{\tau^{*}}(A \cap B) \subseteq \operatorname{int}_{\tau^{*}}(A)$ and $\operatorname{int}_{\tau^{*}}(A \cap B) \subseteq \operatorname{int}_{\tau^{*}}(B)$ from part (2). Thus, $\operatorname{int}_{\tau^{*}}(A \cap B) \subseteq \operatorname{int}_{\tau^{*}}(A) \cap \operatorname{int}_{\tau^{*}}(B)$.
6. Similarly.

Remark 3.8. The following example shows that:

1. $c l_{\tau^{*}}(A)=A$ does not imply that $A \in \tau_{1}^{c}$ or $A \in \tau_{2}^{c}$,
2. $\operatorname{int}_{\tau^{*}}(A)=A$ does not imply that $A \in \tau_{1}$ or $A \in \tau_{2}$.

Example 3.9. From Example 3.3,

1. Let $A=\{1 / c\}$. Then, $c l_{\tau^{*}}(A)=A$. But, $\{1 / c\}$ is neither τ_{1}-closed mset nor τ_{2}-closed mset.
2. Let $A=\{3 / a, 2 / b\}$. Then, $\operatorname{int}_{\tau^{*}}(A)=A$. But, A is neither τ_{1}-open mset nor τ_{2}-open mset.

Theorem 3.10. If (X, τ) is a multiset topological space and $A \subseteq X$, then

1. $\operatorname{int}(A) \subseteq A \cap(b(A))^{c}$,
2. $c l(A) \supseteq A \cup b(A)$.

Proof.

1. Since, $b(A)=\operatorname{cl}(A) \cap \operatorname{cl}\left(A^{c}\right)$. Then, $(b(A))^{c}=(c l(A))^{c} \cup \operatorname{int}(A)$. Therefore, $A \cap(b(A))^{c}=(A \cap$ $\left.(c l(A))^{c}\right) \cup(A \cap \operatorname{int}(A))$. Thus, $A \cap(b(A))^{c}=\left(A \cap(c l(A))^{c}\right) \cup \operatorname{int}(A)$. Hence, $\operatorname{int}(A) \subseteq A \cap(b(A))^{c}$.
2. Similarly.

Remark 3.11. The equality of Theorem 3.10 is not true in general as shown in the following example.
Example 3.12. Let $X=\{3 / a, 2 / b, 1 / c\}$ be an mset and $\tau=\{X, \phi,\{1 / a, 2 / b\},\{1 / a, 1 / b\}\}$ be an Mtopology on X.

1. If $A=\{2 / a, 1 / c\}$. Then, $\operatorname{int}(A)=\phi$. But, $A \cap(b(A))^{c}=\{1 / a\} \neq \operatorname{int}(A)$.
2. If $A=\{2 / a, 2 / b\}$. Then, $\operatorname{cl}(A)=X$. But, $A \cup b(A)=\{2 / a, 2 / b, 1 / c\} \neq \operatorname{cl}(A)$.

Theorem 3.13. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a multiset bitopological space. Then, $M P^{*}$-boundary operator has the following properties:

1. $b_{\tau^{*}}(X)=b_{\tau^{*}}(\phi)=\phi$,
2. $b_{\tau^{*}}(A)=c l_{\tau^{*}}(A) \cap\left(i n t_{\tau^{*}}(A)\right)^{c} \forall A \in P^{*}(X)$,
3. $\operatorname{int}_{\tau^{*}}(A) \subseteq A \cap\left(b_{\tau^{*}}(A)\right)^{c}$,
4. $\operatorname{cl}_{\tau^{*}}(A) \supseteq A \cup b_{\tau^{*}}(A)$,
5. $b_{\tau^{*}}\left(A^{c}\right)=b_{\tau^{*}}(A)$,
6. $b_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right) \subseteq b_{\tau^{*}}(A)$,
7. $b_{\tau^{*}}\left(i n t_{\tau^{*}}(A)\right) \subseteq b_{\tau^{*}}(A)$.

Proof.

1. Immediate.
2. Since, $b_{\tau^{*}}(A)=b_{\tau_{1}}(A) \cap b_{\tau_{2}}(A)$. Then, $b_{\tau^{*}}(A)=\left(c l_{\tau_{1}}(A) \cap c l_{\tau_{1}}\left(A^{c}\right)\right) \cap\left(c l_{\tau_{2}}(A) \cap c l_{\tau_{2}}\left(A^{c}\right)\right)$. Therefore, $b_{\tau^{*}}(A)=\left(c l_{\tau_{1}}(A) \cap c l_{\tau_{2}}(A)\right) \cap\left(c l_{\tau_{1}}\left(A^{c}\right) \cap c l_{\tau_{2}}\left(A^{c}\right)\right)$. Thus, $b_{\tau^{*}}(A)=c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}\left(A^{c}\right)$. By using Theorem 3.4, $b_{\tau^{*}}(A)=c l_{\tau^{*}}(A) \cap\left(\text { int }_{\tau^{*}}(A)\right)^{c}$.
3. Since, $\operatorname{int}_{\tau_{1}}(A) \subseteq A \cap\left(b_{\tau_{1}}(A)\right)^{c}$ and $\operatorname{int}_{\tau_{2}}(A) \subseteq A \cap\left(b_{\tau_{2}}(A)\right)^{c}$. Then, $\operatorname{int}_{\tau^{*}}(A) \subseteq\left(A \cap\left(b_{\tau_{1}}(A)\right)^{c}\right) \cup(A \cap$ $\left.\left(b_{\tau_{2}}(A)\right)^{c}\right)$. Therefore, int $_{\tau^{*}}(A) \subseteq A \cap\left(\left(b_{\tau_{1}}(A)\right)^{c} \cup\left(b_{\tau_{2}}(A)\right)^{c}\right)$. Thus, int $t_{\tau^{*}}(A) \subseteq A \cap\left(b_{\tau_{1}}(A) \cap b_{\tau_{2}}(A)\right)^{c}$. Hence, $\operatorname{int}_{\tau^{*}}(A) \subseteq A \cap\left(b_{\tau^{*}}(A)\right)^{c}$.
4. Since, $c l_{\tau_{i}}(A) \supseteq A \cup b_{\tau_{i}}(A)$ where $i=1,2$. Then, $c l_{\tau^{*}}(A) \supseteq\left(A \cup b_{\tau_{1}}(A)\right) \cap\left(A \cup b_{\tau_{2}}(A)\right)$. Thus, $c l_{\tau^{*}}(A) \supseteq A \cup\left(b_{\tau_{1}}(A) \cap b_{\tau_{2}}(A)\right)$. Therefore, $c l_{\tau^{*}}(A) \supseteq A \cup b_{\tau^{*}}(A)$.
5. Clearly from the definition of $M P^{*}$-boundary operator.
6. Since, $b_{\tau^{*}}(A)=c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}\left(A^{c}\right)$. Then, $b_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right)=c l_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right) \cap c l_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right)^{c}$. Therefore, $b_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right)=c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}\left(\right.$ int $\left._{\tau^{*}}\left(A^{c}\right)\right)$. So, $b_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right) \subseteq c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}\left(A^{c}\right)$. Hence, $b_{\tau^{*}}\left(c l_{\tau^{*}}(A)\right) \subseteq b_{\tau^{*}}(A)$.
7. Since, $b_{\tau^{*}}(A)=c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}\left(A^{c}\right)$. Then, $b_{\tau^{*}}\left(\right.$ int $\left._{\tau^{*}}(A)\right)=c l_{\tau^{*}}\left(i n t_{\tau^{*}}(A)\right) \cap c l_{\tau^{*}}\left(\left(\text { int }_{\tau^{*}}(A)\right)^{c}\right)$. Therefore, $b_{\tau^{*}}\left(i n \tau_{\tau^{*}}(A)\right) \subseteq c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}\left(c l_{\tau^{*}}\left(A^{c}\right)\right)$. So, $b_{\tau^{*}}\left(i n t_{\tau^{*}}(A)\right) \subseteq c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}\left(A^{c}\right)$. Hence, $b_{\tau^{*}}\left(i n t_{\tau^{*}}(A)\right) \subseteq b_{\tau^{*}}(A)$.

Theorem 3.14. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a multiset bitopological space. If $b_{\tau^{*}}(A)=\phi$, then $A \in \tau^{*} \cap\left(\tau^{*}\right)^{c}$.
Proof. Since, $b_{\tau^{*}}(A)=\phi$. Then, $c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}\left(A^{c}\right)=\phi$. Therefore, $c l_{\tau^{*}}(A) \subseteq\left(c l_{\tau^{*}}\left(A^{c}\right)\right)^{c}=$ $\operatorname{int}_{\tau^{*}}(A)$. Thus, $A \subseteq \operatorname{cl}_{\tau^{*}}(A) \subseteq \operatorname{int}_{\tau^{*}}(A) \subseteq A$. Hence, $A \in \tau^{*} \cap\left(\tau^{*}\right)^{c}$.

Remark 3.15. The converse of Theorem 3.14 is not true in general as shown in the following example.
Example 3.16. Let $X=\{3 / a, 2 / b, 1 / c\}$ be an mset and
$\tau_{1}=\{X, \phi,\{2 / a\},\{1 / b\},\{2 / a, 1 / b\}\}, \tau_{2}=\{X, \phi,\{1 / a\},\{1 / a, 1 / c\},\{1 / b, 1 / c\}$,
$\{1 / c\},\{1 / a, 1 / b, 1 / c\}\}$. Therefore,
$\tau^{*}=\{X, \phi,\{1 / a\},\{1 / b\},\{1 / c\},\{2 / a\},\{1 / a, 1 / b\},\{1 / a, 1 / c\},\{1 / b, 1 / c\},\{2 / a, 1 / b\}$,
$\{2 / a, 1 / c\},\{1 / a, 1 / b, 1 / c\},\{2 / a, 1 / b, 1 / c\}\}$. Assume that $A=\{1 / a, 1 / b\} \in \tau^{*} \cap \tau^{* c}$. But, $b_{\tau^{*}}(A)=$ $c l_{\tau^{*}}(A) \cap c l_{\tau^{*}}\left(A^{c}\right)=\{1 / a, 1 / b\} \cap\{2 / a, 1 / b, 1 / c\}=\{1 / a, 1 / b\} \neq \phi$. Hence, $A \in \tau^{*} \cap \tau^{* c} \nRightarrow b_{\tau^{*}}(A)=\phi$.

Definition 3.17. Let $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \eta_{1}, \eta_{2}\right)$ be two multiset bitopological spaces. Then, $f: X \rightarrow Y$ is called an $M P^{*}$-continuous function if and only if $f^{-1}(V) \in \tau^{*} \forall V \in \eta^{*}$, where $\eta^{*}=\{B \subseteq Y$: $\left.\operatorname{int}_{\eta^{*}}(B)=B\right\}$.

Theorem 3.18. Let $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \eta_{1}, \eta_{2}\right)$ be two multiset bitopological spaces and $f: X \rightarrow Y$ is an mset function. Then, the following conditions are equivalent:

1. f is an $M P^{*}$-continuous function,
2. $f^{-1}(H) \in \tau^{* c} \forall H \in \eta^{* c}$,
3. $f\left(c l_{\tau^{*}}(A)\right) \subseteq c l_{\eta^{*}}(f(A)) \forall A \subseteq X$,
4. $c l_{\tau^{*}}\left(f^{-1}(B)\right) \subseteq f^{-1}\left(c l_{\eta^{*}}(B)\right) \forall B \subseteq Y$,
5. $f^{-1}\left(i n t_{\eta^{*}}(B)\right) \subseteq \operatorname{int}_{\tau^{*}}\left(f^{-1}(B)\right) \forall B \subseteq Y$.

Proof.

$(1 \Rightarrow 2)$ Let f is an $M P^{*}$-continuous function and $H \in \eta^{* c}$. Then, $H^{c} \in \eta^{*}$. Thus, $f^{-1}\left(H^{c}\right) \in \tau^{*}$. Therefore, $\left(f^{-1}\left(H^{c}\right)\right)^{c} \in \tau^{* c}$. Hence, $f^{-1}(H) \in \tau^{* c}$.
$(2 \Rightarrow 3)$ Let $A \subseteq X$. Since, $f(A) \subseteq c l_{\eta^{*}}(f(A))$. Then, $A \subseteq f^{-1}\left(c l_{\eta^{*}}(f(A))\right)$. But, $c l_{\eta^{*}}(f(A))$ is a closed mset over Y. So, $f^{-1}\left(c l_{\eta^{*}}(f(A))\right)$ is also a closed mset over X. Hence, $c l_{\tau^{*}}(A) \subseteq f^{-1}\left(c l_{\eta^{*}}(f(A))\right)$. Therefore, $f\left(c l_{\tau^{*}}(A)\right) \subseteq c l_{\eta^{*}}(f(A))$.
$(3 \Rightarrow 4)$ Let $B \subseteq Y$. Then, $f^{-1}(B) \subseteq X$. From part (3), $f\left(c l_{\tau^{*}}\left(f^{-1}(B)\right)\right) \subseteq c l_{\eta^{*}}\left(f f^{-1}(B)\right)$. Therefore, $f\left(c l_{\tau^{*}}\left(f^{-1}(B)\right)\right) \subseteq c l_{\eta^{*}}(B)$. Hence, $c l_{\tau^{*}}\left(f^{-1}(B)\right) \subseteq f^{-1}\left(c l_{\eta^{*}}(B)\right)$.
($4 \Rightarrow 5$) Immediate by taking the complement to part (4).
(5 $\quad \mathbf{c} 1$) Let $V \in \eta^{*}$. Then, int $_{\eta^{*}}(V)=V$. Thus, $f^{-1}(V) \subseteq \operatorname{int}_{\tau^{*}}\left(f^{-1}(V)\right)$ by using part (5). But, $\operatorname{int}_{\tau^{*}}\left(f^{-1}(V)\right) \subseteq f^{-1}(V)$. Hence, $f^{-1}(V) \in \tau^{*}$. This implies that f is an $M P^{*}$-continuous function.

References

1 Blizard and D. Wayne, Multiset theory, Notre Dame Journal of Formal Logic 30 (1989) 36-66.
2 Blizard and D. Wayne, Real-valued multisets and fuzzy sets, Fuzzy Sets and Systems 33 (1989) 77-97.
3 Blizard and D. Wayne, The development of multiset theory, Modern Logic 1 (1991) 319-352.
4 S. A. El-Sheikh, Dimension Theory of Bitopological Spaces, Master Thesis, Ain Shams University, Cairo, Egypt (1987).
5 S. A. El-Sheikh, R. A-K. Omar and M. Raafat, Multiset bitopological spaces, Asian Journal of Mathematics and Computer Research 8 (2015) 103-115.

6 K. P. Girish and J. J. Sunil, Multiset topologies induced by multiset relations, Inform. Sci. 188 (2012) 298-313.
7 K. P. Girish and J. J. Sunil, On multiset topologies, Theory and Applications of Mathematics \& Computer Science 2 (2012) 37-52.

8 K. P. Girish and J. J. Sunil, Relations and functions in multiset context, Inform. Sci. 179 (2009) 758-768.
9 K. P. Girish and J. J. Sunil, Rough multisets and information multisystems, Advances in Decision Sciences Article ID 495392 (2011) 1-17.
10 S. P. Jena, S. K. Ghosh and B. K. Tripathy, On the theory of bags and lists, Inform. Sci. 132 (2001) 241-254.
11 J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963) 71-89.
2 J. Mahanta and D. Das, Boundary and exterior of a multiset topology, arXiv 1501.07193v1 (2015).
W. J. Pervin, Connectedness in bitopological spaces, Indog Math. J. 29 (1967) 369-372.
I. L. Reilly, On pairwise connected bitopological spaces, Kyungpook Math. J. 11 (1971) 25-28.
D. Singh, A note on the development of multiset theory, Modern Logic 4 (1994) 405-406.

16 D. Singh, A. M. Ibrahim, T. Yohana and J. N. Singh, An overview of the applications of multisets, Novi Sad J. Math 37 (2007) 73-92.
17 D. Singh, A. M. Ibrahim, T. Yohana and J. N. Singh, Complementation in multiset theory, International Mathematical Forum 6 (2011) 1877-1884.
18 D. Singh and J. N. Singh, Some combinatorics of multisets, International Journal of Mathematical Education in Science and Technology 34 (2003) 489-499
9 J. Shlapal, Relations and topologies, Czechoslovak Mathematical Journal 43 (1993) 141-150.
J. Swart, Total disconectedness in bitopological spaces and product bitopological spaces, Indagationes Mathematicae 74 (1971) 135-145.
21 R. R. Yager, On the theory of bags, Int. General Syst. 13 (1986) 23-37.

