South Asian Journal of Mathematics 2016, Vol.6 (1): $1 \sim 9$ RESEARCH ARTICLE

www.sajm-online.com ISSN 2251-1512

Operators on multiset bitopological spaces

S. A. El-Sheikh[®], R. A-K. Omar[®], M. Raafat[®]*

^① Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt E-mail: dr_mahmoudraafat2011@yahoo.com

Received: Oct-18-2015; Accepted: Dec-26-2015 *Corresponding author

Abstract The main purpose of this paper is to introduce and study some operators on multiset bitopological spaces such as MP^* -closure, MP^* -interior and MP^* -boundary. Also, their properties are presented in detail. Moreover, the concept of MP^* -continuous function is introduced in multiset bitopological spaces.

Key Words Mset, Multiset bitopological space, MP^* -closure, MP^* -interior and MP^* -boundary MSC 2010 54A05, 54B05

1 Introduction

The notion of a multiset is well established both in mathematics and computer science [1, 2, 8,]15, 17, 19]. In mathematics, a multiset is considered to be the generalization of a set. In classical set theory, a set is a well-defined collection of distinct objects. If repeated occurrences of any object are allowed in a set, then a mathematical structure, that is known as multiset (mset, for short), is obtained [3, 9, 16, 18, 21]. For the sake of convenience an mset is written as $\{k_1/x_1, k_2/x_2, ..., k_n/x_n\}$ in which the element x_i occurs k_i times. We observe that each multiplicity k_i is a positive integer. The number of occurrences of an object x in an mset A, which is finite in most of the studies that involve msets, is called its multiplicity or characteristic value, usually denoted by $m_A(x)$ or $C_A(x)$ or simply by A(x). One of the most natural and simplest examples is the mset of prime factors of a positive integer n. The number 504 has the factorization $504 = 2^3 3^2 7^1$ which gives the mset $X = \{3/2, 2/3, 1/7\}$ where $C_X(2) = 3$, $C_X(3) = 2, C_X(7) = 1$. Jena et. al. [10] studied the concept of bags and some properties and results about this concept. Girish et. al. [6] presented mset topologies induced by mset relations and studied the concepts of closure operator, interior operator and neighborhood operator on mset. In 2012 Girish et. al. [7] studied the notions of basis, sub-basis, closed sets, closure, interior and continuous mset function.

A bitopological space (X, τ_1, τ_2) was introduced by Kelly [11] in 1963, as a method of generalizes topological spaces (X, τ) . Every bitopological space (X, τ_1, τ_2) can be regarded as a topological space (X,τ) if $\tau_1 = \tau_2 = \tau$. Furthermore, he extended some of the standard results of separation axioms and mappings in a topological space to a bitopological space. The notion of connectedness in bitopological spaces has been studied by Pervin [13], Reily [14] and Swart [20]. In 2015, El-Sheikh et. al. [5] introduced initially the concept of multiset bitopological spaces and they presented some properties and results about this concept. In addition, they defined the notion of *ij*-operators on multiset bitopological spaces and studied the relationships among them.

In this paper, we firstly introduced some operators on multiset bitopological spaces such as MP^* closure, MP^* -interior and MP^* -boundary. Additionally, their properties are presented in detail. Moreover, there exist many of deviations between multiset bitopological spaces and the previous work [4]. Finally, the concept of MP^* -continuous function is presented in multiset bitopological spaces.

2 Preliminaries

Definition 2.1. [10] An mset X drawn from the set U is represented by a count function X or C_X defined as $C_X : U \to N$, where N represents the set of non-negative integers.

Here C_X (x) is the number of occurrences of the element x in the mset X. We present the mset X drawn from the set $U = \{x_1, x_2, x_3, ..., x_n\}$ as $X = \{m_1/x_1, m_2/x_2, m_3/x_3, ..., m_n/x_n\}$ where m_i is the number of occurrences of the element x_i , i = 1, 2, 3, ..., n in the mset X.

Definition 2.2. [10] A domain U, is defined as a set of elements from which msets are constructed. The mset space $[U]^w$ is the set of all msets whose elements are in U such that no element in the mset occurs more than w times.

The mset space $[U]^{\infty}$ is the set of all msets over a domain U such that there is no limit on the number of occurrences of an element in a mset. If $U = \{x_1, x_2, ..., x_k\}$, then $[U]^w = \{\{m_1/x_1, m_2/x_2, ..., m_k/x_k\}$: for $i = 1, 2, ..., k; m_i \in \{0, 1, 2, ..., w\}\}$.

Definition 2.3. [10] Let X and Y be two msets drawn from a set U. Then,

- 1. X = Y if $C_X(x) = C_Y(x)$ for all $x \in U$,
- 2. $X \subseteq Y$ if $C_X(x) \leq C_Y(x)$ for all $x \in U$,
- 3. $P = X \cup Y$ if $C_P(x) = Max\{C_X(x), C_Y(x)\}$ for all $x \in U$,
- 4. $P = X \cap Y$ if $C_P(x) = Min\{C_X(x), C_Y(x)\}$ for all $x \in U$,
- 5. $P = X \oplus Y$ if $C_P(x) = Min\{C_X(x) + C_Y(x), w\}$ for all $x \in U$,
- 6. $P = X \oplus Y$ if $C_P(x) = Max\{C_X(x) C_Y(x), 0\}$ for all $x \in U$, where \oplus and \oplus represent mset addition and mset subtraction respectively.

Definition 2.4. [10] Let X be a mset drawn from the set U. If $C_X(x) = 0 \forall x \in U$, then X is called an empty mset and denoted by ϕ , i.e., $\phi(x) = 0 \forall x$.

If X is an ordinary set with n distinct elements, then the power set P(X) of X contains exactly 2^n elements. If X is a mset with n elements (repetitions counted), then the power set P(X) contains strictly less than 2^n elements because singleton submets do not repeat in P(X). In classical set theory, Cantor's power set theorem fails for msets. It is possible to formulate the following reasonable definition of a power mset of X for finite mset X that preserves Cantor's power set theorem.

Definition 2.5. [1] (Power Mset) Let $X \in [U]^w$ be a mset. Then, the power mset P(X) of X is the set of all submodes of X. We have $Y \in P(X)$ if and only if $Y \subseteq X$. If $Y = \phi$, then $Y \in P(X)$; and if $Y \neq \phi$,

then $Y \in {}^{k}P(X)$ where $k = \prod_{z} \begin{pmatrix} |X_{z}| \\ |Y_{z}| \end{pmatrix}$, the product \prod_{z} is taken over by distinct elements of z of

the mset Y and $|[X]_z| = m$ iff $z \in X$, $|[Y]_z| = n$ iff $z \in Y$, then $\begin{pmatrix} |[X]_z| \\ |[Y]_z| \end{pmatrix} = \begin{pmatrix} m \\ n \end{pmatrix} = \frac{m!}{n!(m-n)!}$.

The power set of a mset is the support set of the power mset and is denoted by $P^*(X)$. The following theorem was showed the cardinality of the power set of a mset.

Theorem 2.6. [18] Let P(X) be a power mset whose members drawn from the mset $X = \{m_1/x_1, m_2/x_2, ..., m_n/x_n\}$ and $P^*(X)$ be the power set of a mset X. Then, $Card(P^*(X)) = \prod_{i=1}^n (1+m_i)$.

Definition 2.7. [6] Let $X \in [U]^w$ and $\tau \subseteq P^*(X)$. Then, τ is called a multiset topology (for short, M-topology) of X if τ satisfies the following properties:

- 1. the mset X and the empty mset ϕ are in τ ,
- 2. the mset union of the elements of any subcollection of τ is in τ ,
- 3. the mset intersection of the elements of any finite subcollection of τ is in τ .

Hence, (X,τ) is called an M-topological space. Each element in τ is called an open mset. Additionally, OM(X) is the set of all open submisets of X.

Definition 2.8. [7] Let (X,τ) be a M-topological space and Y be a submet of X. The collection $\tau_Y = \{G' = Y \cap G; G \in \tau\}$ is a M-topology on Y, called the subspace M-topology.

Remark 2.9. [7] The complement of any submet Y in a met topological space (X,τ) is defined by : $Y^c = X \ominus Y.$

Definition 2.10. [7] A submet Y of a M-topological space X is said to be closed if the met $X \ominus Y$ is open.

Definition 2.11. [7] Let A be a submet of an M-topological space (X, τ) . Then,

1. the interior of A is defined as the union of all open msets contained in A and denoted by int(A), i.e., $int(A) = \bigcup \{ G \subseteq X : G \text{ is an open mset and } G \subseteq A \}$ and $C_{int(A)}(x) = max \{ C_G(x) : G \in \tau, G \subseteq A \}$, 2. the closure of A is defined as the intersection of all closed msets containing A and denoted by cl(A), i.e., $cl(A) = \bigcap \{K \subseteq X : K \text{ is a closed mset and } A \subseteq K\}$ and $C_{cl(A)}(x) = min\{C_K(x) : K \in \tau^c, A \subseteq K\}.$

Proposition 2.12. [6, 7] If (X,τ) is a M-topological space and A, B are two submosts of X. Then, the following properties are satisfied:

- $int(A^c) = (cl(A))^c$.
- $cl(A^c) = (int(A))^c$.
- $cl(A \cup B) = cl(A) \cup cl(B)$.
- $int(A \cap B) = int(A) \cap int(B)$.

Definition 2.13. [12] The boundary of a submet A of X is the intersection of closure of A and closure of the complement of A. It is denoted by b(A) and defined as $b(A) = cl(A) \cap cl(A^c)$.

Definition 2.14. [5] A multiset bitopological space is a triple (X, τ_1, τ_2) where X is a non-empty mset and τ_1, τ_2 are arbitrary M-topologies on X.

Definition 2.15. [5] Let (X, τ_1, τ_2) be a multiset bitopological space over X and Y be a non-empty submet of X. Then, $\tau_1^Y = \{Y \cap F : F \in \tau_1\}$ and $\tau_2^Y = \{Y \cap G : G \in \tau_2\}$ are said to be the relative M-topologies on Y. Also, (Y, τ_1^Y, τ_2^Y) is called a relative multiset bitopological subspace of (X, τ_1, τ_2) .

3 Operators on multiset bitopological spaces

In this section, some operators on multiset bitopological spaces are introduced such as MP^* -closure, MP^* -interior and MP^* -boundary. Further, their properties are presented. Moreover, the concept of MP^* -continuous function is studied.

Definition 3.1. Let (X, τ_1, τ_2) be a multiset bitopological space. Then, the following operators are defined as:

- 1. an MP^* -closure operator $cl_{\tau^*}: P^*(X) \to P^*(X)$ is defined by: $cl_{\tau^*}(A) = cl_{\tau_1}(A) \cap cl_{\tau_2}(A)$, where $A \in P^*(X)$ and $P^*(X)$ is the support set of the power mset of X,
- 2. an MP^* -interior operator $int_{\tau^*}: P^*(X) \to P^*(X)$ is established by: $int_{\tau^*}(A) = int_{\tau_1}(A) \cup int_{\tau_2}(A)$, where $A \in P^*(X)$ and $\tau^* = \{A \subseteq X : int_{\tau^*}(A) = A\}$,
- 3. an MP^* -boundary operator $b_{\tau^*}: P^*(X) \to P^*(X)$ is described by: $b_{\tau^*}(A) = b_{\tau_1}(A) \cap b_{\tau_2}(A) = cl_{\tau^*}(A) \cap cl_{\tau^*}(A^c)$, where $A \in P^*(X)$.

Remark 3.2. Clearly from the above definition, τ^* is a supra M-topological space because a finite intersection of members of τ^* may not be a member of τ^* as shown in the following example.

Example 3.3. Let $X = \{3/a, 2/b, 1/c\}$ be an mset and $\tau_1 = \{X, \phi, \{3/a\}, \{2/b, 1/c\}\}, \tau_2 = \{X, \phi, \{2/b\}, \{3/a, 1/c\}\}$. Therefore,

 $\tau^* = \{X, \phi, \{3/a\}, \{2/b\}, \{3/a, 2/b\}, \{3/a, 1/c\}, \{2/b, 1/c\}\}.$ Assume that $A = \{3/a, 1/c\}, B = \{2/b, 1/c\}.$ Then, $A, B \in \tau^*$. But, $A \cap B = \{1/c\} \notin \tau^*.$

Theorem 3.4. Let (X, τ_1, τ_2) be a multiset bitopological space. Then, MP^* -closure operator has the following properties:

- 1. $A \subseteq cl_{\tau^*}(A) \ \forall A \in P^*(X),$
- 2. if $A \subseteq B$, then $cl_{\tau^*}(A) \subseteq cl_{\tau^*}(B) \ \forall A, B \in P^*(X)$,
- 3. $cl_{\tau^*}(cl_{\tau^*}(A)) = cl_{\tau^*}(A),$
- 4. $cl_{\tau^*}(A \cup B) \supseteq cl_{\tau^*}(A) \cup cl_{\tau^*}(B),$
- 5. $cl_{\tau^*}(A \cap B) \subseteq cl_{\tau^*}(A) \cap cl_{\tau^*}(B),$
- 6. $cl_{\tau^*}(\phi) = \phi$ and $cl_{\tau^*}(X) = X$,
- 7. $(int_{\tau^*}(A))^c = cl_{\tau^*}(A^c)$, where A^c is the complement of A with respect to the mset X,
- 8. $A \in \tau^{*c}$ if and only if $cl_{\tau^*}(A) = A$, where τ^{*c} is the family of τ^* -closed submets of X.

Proof.

- 1. Since, $cl_{\tau^*}(A) = cl_{\tau_1}(A) \cap cl_{\tau_2}(A)$, $A \subseteq cl_{\tau_1}(A)$ and $A \subseteq cl_{\tau_2}(A)$. Then, $A \subseteq cl_{\tau_1}(A) \cap cl_{\tau_2}(A) = cl_{\tau^*}(A)$.
- 2. Let $A \subseteq B$. Then, $cl_{\tau_i}(A) \subseteq cl_{\tau_i}(B)$ where i = 1, 2. Therefore, $cl_{\tau_1}(A) \cap cl_{\tau_2}(A) \subseteq cl_{\tau_1}(B) \cap cl_{\tau_2}(B)$. Thus, $cl_{\tau^*}(A) \subseteq cl_{\tau^*}(B)$.
- 3. Since, $cl_{\tau^*}(cl_{\tau^*}(A)) = cl_{\tau_1}(cl_{\tau_1}(A) \cap cl_{\tau_2}(A)) \cap cl_{\tau_2}(cl_{\tau_1}(A) \cap cl_{\tau_2}(A)).$ Then, $cl_{\tau^*}(cl_{\tau^*}(A)) \subseteq (cl_{\tau_1}(cl_{\tau_1}(A)) \cap cl_{\tau_1}(cl_{\tau_2}(A))) \cap (cl_{\tau_2}(cl_{\tau_1}(A)) \cap cl_{\tau_2}(cl_{\tau_2}(A))).$ Therefore, $cl_{\tau^*}(cl_{\tau^*}(A)) \subseteq (cl_{\tau_1}(A) \cap cl_{\tau_1}(cl_{\tau_2}(A))) \cap (cl_{\tau_2}(cl_{\tau_1}(A)) \cap cl_{\tau_2}(A)).$ Hence, $cl_{\tau^*}(cl_{\tau^*}(A)) \subseteq cl_{\tau_1}(A) \cap cl_{\tau_2}(A).$ This implies that $cl_{\tau^*}(cl_{\tau^*}(A)) \subseteq cl_{\tau^*}(A).$ Conversely, from part (1) we have $A \subseteq cl_{\tau^*}(A).$ Then, $cl_{\tau^*}(A) \subseteq cl_{\tau^*}(cl_{\tau^*}(A))$ by part (2). Thus, $cl_{\tau^*}(cl_{\tau^*}(A)) = cl_{\tau^*}(A).$
- 4. Since, $A, B \subseteq A \cup B$. Then, $cl_{\tau^*}(A) \subseteq cl_{\tau^*}(A \cup B)$ and $cl_{\tau^*}(B) \subseteq cl_{\tau^*}(A \cup B)$ from part (2). Thus, $cl_{\tau^*}(A) \cup cl_{\tau^*}(B) \subseteq cl_{\tau^*}(A \cup B)$.
- 5. Since, $A \cap B \subseteq A, B$. Then, $cl_{\tau^*}(A \cap B) \subseteq cl_{\tau^*}(A)$ and $cl_{\tau^*}(A \cap B) \subseteq cl_{\tau^*}(B)$ from part (2). Thus, $cl_{\tau^*}(A \cap B) \subseteq cl_{\tau^*}(A) \cap cl_{\tau^*}(B)$.
- 6. Clear.
- 7. Since, $(int_{\tau^*}(A))^c = (int_{\tau_1}(A) \cup int_{\tau_2}(A))^c$. Then, $(int_{\tau^*}(A))^c = (int_{\tau_1}(A))^c \cap (int_{\tau_2}(A))^c$. Therefore, $(int_{\tau^*}(A))^c = (cl_{\tau_1}(A^c)) \cap (cl_{\tau_2}(A^c))$. Hence, $(int_{\tau^*}(A))^c = cl_{\tau^*}(A^c)$.

8. Immediate by using part (7).

Remark 3.5. In multiset bitopological space (X, τ_1, τ_2) , $cl_{\tau^*}(A \cup B) \neq cl_{\tau^*}(A) \cup cl_{\tau^*}(B)$ in general as shown in the following example.

Example 3.6. From Example 3.3, Let $A = \{2/a\}, B = \{1/b\}$. Then, $cl_{\tau^*}(A) = \{3/a\}, cl_{\tau^*}(B) = \{2/b\},$ but $cl_{\tau^*}(A \cup B) = X$. Hence, $cl_{\tau^*}(A \cup B) \neq cl_{\tau^*}(A) \cup cl_{\tau^*}(B)$.

Theorem 3.7. Let (X, τ_1, τ_2) be a multiset bitopological space. Then, MP^* -interior operator has the following properties:

- 1. $int_{\tau^*}(A) \subseteq A \ \forall A \in P^*(X),$
- 2. if $A \subseteq B$, then $int_{\tau^*}(A) \subseteq int_{\tau^*}(B) \ \forall A, B \in P^*(X)$,
- 3. $int_{\tau^*}(int_{\tau^*}(A)) = int_{\tau^*}(A),$
- 4. $int_{\tau^*}(\phi) = \phi \text{ and } int_{\tau^*}(X) = X$,
- 5. $int_{\tau^*}(A \cap B) \subseteq int_{\tau^*}(A) \cap int_{\tau^*}(B)$,
- 6. $int_{\tau^*}(A \cup B) \supseteq int_{\tau^*}(A) \cup int_{\tau^*}(B).$

Proof.

- 1. Since, $int_{\tau^*}(A) = int_{\tau_1}(A) \cup int_{\tau_2}(A)$, $int_{\tau_1}(A) \subseteq A$ and $int_{\tau_2}(A) \subseteq A$. Then, $int_{\tau^*}(A) \subseteq A$.
- 2. Let $A \subseteq B$. Then, $int_{\tau_i}(A) \subseteq int_{\tau_i}(B)$ where i = 1, 2. Therefore, $int_{\tau_1}(A) \cup int_{\tau_2}(A) \subseteq int_{\tau_1}(B) \cup int_{\tau_2}(B)$. Thus, $int_{\tau^*}(A) \subseteq int_{\tau^*}(B)$.
- 3. Since, $int_{\tau^*}(int_{\tau^*}(A)) = int_{\tau_1}(int_{\tau_1}(A) \cup int_{\tau_2}(A)) \cup int_{\tau_2}(int_{\tau_1}(A) \cup int_{\tau_2}(A)).$ Then, $int_{\tau^*}(int_{\tau^*}(A)) \supseteq (int_{\tau_1}(A) \cup int_{\tau_1}(int_{\tau_2}(A))) \cup (int_{\tau_2}(int_{\tau_1}(A)) \cup int_{\tau_2}(A)).$ Therefore, $int_{\tau^*}(int_{\tau^*}(A)) \supseteq int_{\tau_1}(A) \cup int_{\tau_2}(A).$ Hence, $int_{\tau^*}(int_{\tau^*}(A)) \supseteq int_{\tau^*}(A).$ Conversely, from part (1) we have $int_{\tau^*}(A) \subseteq A$. Then, $int_{\tau^*}(int_{\tau^*}(A)) \subseteq int_{\tau^*}(A)$ by part (2). Thus, $int_{\tau^*}(int_{\tau^*}(A)) = int_{\tau^*}(A).$
- 4. Clear.
- 5. Since, $A \cap B \subseteq A, B$. Then, $int_{\tau^*}(A \cap B) \subseteq int_{\tau^*}(A)$ and $int_{\tau^*}(A \cap B) \subseteq int_{\tau^*}(B)$ from part (2). Thus, $int_{\tau^*}(A \cap B) \subseteq int_{\tau^*}(A) \cap int_{\tau^*}(B)$.
- 6. Similarly.

Remark 3.8. The following example shows that:

- 1. $cl_{\tau^*}(A) = A$ does not imply that $A \in \tau_1^c$ or $A \in \tau_2^c$,
- 2. $int_{\tau^*}(A) = A$ does not imply that $A \in \tau_1$ or $A \in \tau_2$.

Example 3.9. From Example 3.3,

- 1. Let $A = \{1/c\}$. Then, $cl_{\tau^*}(A) = A$. But, $\{1/c\}$ is neither τ_1 -closed mset nor τ_2 -closed mset.
- 2. Let $A = \{3/a, 2/b\}$. Then, $int_{\tau^*}(A) = A$. But, A is neither τ_1 -open mset nor τ_2 -open mset.

Theorem 3.10. If (X, τ) is a multiset topological space and $A \subseteq X$, then

- 1. $int(A) \subseteq A \cap (b(A))^c$,
- 2. $cl(A) \supseteq A \cup b(A)$.

Proof.

- 1. Since, $b(A) = cl(A) \cap cl(A^c)$. Then, $(b(A))^c = (cl(A))^c \cup int(A)$. Therefore, $A \cap (b(A))^c = (A \cap (cl(A))^c) \cup (A \cap int(A))$. Thus, $A \cap (b(A))^c = (A \cap (cl(A))^c) \cup int(A)$. Hence, $int(A) \subseteq A \cap (b(A))^c$.
- 2. Similarly.

Remark 3.11. The equality of Theorem 3.10 is not true in general as shown in the following example.

Example 3.12. Let $X = \{3/a, 2/b, 1/c\}$ be an mset and $\tau = \{X, \phi, \{1/a, 2/b\}, \{1/a, 1/b\}\}$ be an M-topology on X.

- 1. If $A = \{2/a, 1/c\}$. Then, $int(A) = \phi$. But, $A \cap (b(A))^c = \{1/a\} \neq int(A)$.
- 2. If $A = \{2/a, 2/b\}$. Then, cl(A) = X. But, $A \cup b(A) = \{2/a, 2/b, 1/c\} \neq cl(A)$.

Theorem 3.13. Let (X, τ_1, τ_2) be a multiset bitopological space. Then, MP^* -boundary operator has the following properties:

- 1. $b_{\tau^*}(X) = b_{\tau^*}(\phi) = \phi$,
- 2. $b_{\tau^*}(A) = cl_{\tau^*}(A) \cap (int_{\tau^*}(A))^c \ \forall A \in P^*(X),$
- 3. $int_{\tau^*}(A) \subseteq A \cap (b_{\tau^*}(A))^c$,
- $4. \ cl_{\tau^*}(A) \supseteq A \cup b_{\tau^*}(A),$
- 5. $b_{\tau^*}(A^c) = b_{\tau^*}(A),$
- 6. $b_{\tau^*}(cl_{\tau^*}(A)) \subseteq b_{\tau^*}(A),$
- 7. $b_{\tau^*}(int_{\tau^*}(A)) \subseteq b_{\tau^*}(A).$

Proof.

- 1. Immediate.
- 2. Since, $b_{\tau^*}(A) = b_{\tau_1}(A) \cap b_{\tau_2}(A)$. Then, $b_{\tau^*}(A) = (cl_{\tau_1}(A) \cap cl_{\tau_1}(A^c)) \cap (cl_{\tau_2}(A) \cap cl_{\tau_2}(A^c))$. Therefore, $b_{\tau^*}(A) = (cl_{\tau_1}(A) \cap cl_{\tau_2}(A)) \cap (cl_{\tau_1}(A^c) \cap cl_{\tau_2}(A^c))$. Thus, $b_{\tau^*}(A) = cl_{\tau^*}(A) \cap cl_{\tau^*}(A^c)$. By using Theorem 3.4, $b_{\tau^*}(A) = cl_{\tau^*}(A) \cap (int_{\tau^*}(A))^c$.

- 3. Since, $int_{\tau_1}(A) \subseteq A \cap (b_{\tau_1}(A))^c$ and $int_{\tau_2}(A) \subseteq A \cap (b_{\tau_2}(A))^c$. Then, $int_{\tau^*}(A) \subseteq (A \cap (b_{\tau_1}(A))^c) \cup (A \cap (b_{\tau_2}(A))^c)$. Therefore, $int_{\tau^*}(A) \subseteq A \cap ((b_{\tau_1}(A))^c \cup (b_{\tau_2}(A))^c)$. Thus, $int_{\tau^*}(A) \subseteq A \cap (b_{\tau_1}(A) \cap b_{\tau_2}(A))^c$. Hence, $int_{\tau^*}(A) \subseteq A \cap (b_{\tau^*}(A))^c$.
- 4. Since, $cl_{\tau_i}(A) \supseteq A \cup b_{\tau_i}(A)$ where i = 1, 2. Then, $cl_{\tau^*}(A) \supseteq (A \cup b_{\tau_1}(A)) \cap (A \cup b_{\tau_2}(A))$. Thus, $cl_{\tau^*}(A) \supseteq A \cup (b_{\tau_1}(A) \cap b_{\tau_2}(A))$. Therefore, $cl_{\tau^*}(A) \supseteq A \cup b_{\tau^*}(A)$.
- 5. Clearly from the definition of MP^* -boundary operator.
- 6. Since, $b_{\tau^*}(A) = cl_{\tau^*}(A) \cap cl_{\tau^*}(A^c)$. Then, $b_{\tau^*}(cl_{\tau^*}(A)) = cl_{\tau^*}(cl_{\tau^*}(A)) \cap cl_{\tau^*}(cl_{\tau^*}(A))^c$. Therefore, $b_{\tau^*}(cl_{\tau^*}(A)) = cl_{\tau^*}(A) \cap cl_{\tau^*}(int_{\tau^*}(A^c))$. So, $b_{\tau^*}(cl_{\tau^*}(A)) \subseteq cl_{\tau^*}(A) \cap cl_{\tau^*}(A^c)$. Hence, $b_{\tau^*}(cl_{\tau^*}(A)) \subseteq b_{\tau^*}(A)$.
- 7. Since, $b_{\tau^*}(A) = cl_{\tau^*}(A) \cap cl_{\tau^*}(A^c)$. Then, $b_{\tau^*}(int_{\tau^*}(A)) = cl_{\tau^*}(int_{\tau^*}(A)) \cap cl_{\tau^*}((int_{\tau^*}(A))^c)$. Therefore, $b_{\tau^*}(int_{\tau^*}(A)) \subseteq cl_{\tau^*}(A) \cap cl_{\tau^*}(cl_{\tau^*}(A^c))$. So, $b_{\tau^*}(int_{\tau^*}(A)) \subseteq cl_{\tau^*}(A) \cap cl_{\tau^*}(A^c)$. Hence, $b_{\tau^*}(int_{\tau^*}(A)) \subseteq b_{\tau^*}(A)$.

Theorem 3.14. Let (X, τ_1, τ_2) be a multiset bitopological space. If $b_{\tau^*}(A) = \phi$, then $A \in \tau^* \cap (\tau^*)^c$.

Proof. Since, $b_{\tau^*}(A) = \phi$. Then, $cl_{\tau^*}(A) \cap cl_{\tau^*}(A^c) = \phi$. Therefore, $cl_{\tau^*}(A) \subseteq (cl_{\tau^*}(A^c))^c = int_{\tau^*}(A)$. Thus, $A \subseteq cl_{\tau^*}(A) \subseteq int_{\tau^*}(A) \subseteq A$. Hence, $A \in \tau^* \cap (\tau^*)^c$.

Remark 3.15. The converse of Theorem 3.14 is not true in general as shown in the following example.

Example 3.16. Let $X = \{3/a, 2/b, 1/c\}$ be an mset and $\tau_1 = \{X, \phi, \{2/a\}, \{1/b\}, \{2/a, 1/b\}\}, \tau_2 = \{X, \phi, \{1/a\}, \{1/a, 1/c\}, \{1/b, 1/c\}, \{1/b, 1/c\}, \{1/c\}, \{1/a\}, \{1/c\}, \{2/a\}, \{1/a, 1/b\}, \{1/a, 1/c\}, \{1/b, 1/c\}, \{2/a, 1/b\}, \{2/a, 1/c\}, \{1/a, 1/b\}, \{1/a, 1/c\}, \{1/a, 1/c\}, \{1/a, 1/b\}, \{2/a, 1/b\}, \{2/a, 1/c\}, \{1/a, 1/b\}, \{1/c\}, \{2/a, 1/b, 1/c\}\}.$ Assume that $A = \{1/a, 1/b\} \in \tau^* \cap \tau^{*c}$. But, $b_{\tau^*}(A) = cl_{\tau^*}(A) \cap cl_{\tau^*}(A^c) = \{1/a, 1/b\} \cap \{2/a, 1/b, 1/c\} = \{1/a, 1/b\} \neq \phi$. Hence, $A \in \tau^* \cap \tau^{*c} \not\Rightarrow b_{\tau^*}(A) = \phi$.

Definition 3.17. Let (X, τ_1, τ_2) and (Y, η_1, η_2) be two multiset bitopological spaces. Then, $f: X \to Y$ is called an MP^* -continuous function if and only if $f^{-1}(V) \in \tau^* \forall V \in \eta^*$, where $\eta^* = \{B \subseteq Y : int_{\eta^*}(B) = B\}$.

Theorem 3.18. Let (X, τ_1, τ_2) and (Y, η_1, η_2) be two multiset bitopological spaces and $f : X \to Y$ is an *mset function. Then, the following conditions are equivalent:*

- 1. f is an MP^* -continuous function,
- 2. $f^{-1}(H) \in \tau^{*c} \ \forall H \in \eta^{*c}$,
- 3. $f(cl_{\tau^*}(A)) \subseteq cl_{\eta^*}(f(A)) \ \forall A \subseteq X,$
- 4. $cl_{\tau^*}(f^{-1}(B)) \subseteq f^{-1}(cl_{\eta^*}(B)) \ \forall B \subseteq Y,$
- 5. $f^{-1}(int_{\eta^*}(B)) \subseteq int_{\tau^*}(f^{-1}(B)) \ \forall B \subseteq Y.$

Proof.

8

- $(1 \Rightarrow 2)$ Let f is an MP^* -continuous function and $H \in \eta^{*c}$. Then, $H^c \in \eta^*$. Thus, $f^{-1}(H^c) \in \tau^*$. Therefore, $(f^{-1}(H^c))^c \in \tau^{*c}$. Hence, $f^{-1}(H) \in \tau^{*c}$.
- $(2 \Rightarrow 3)$ Let $A \subseteq X$. Since, $f(A) \subseteq cl_{\eta^*}(f(A))$. Then, $A \subseteq f^{-1}(cl_{\eta^*}(f(A)))$. But, $cl_{\eta^*}(f(A))$ is a closed mset over Y. So, $f^{-1}(cl_{\eta^*}(f(A)))$ is also a closed mset over X. Hence, $cl_{\tau^*}(A) \subseteq f^{-1}(cl_{\eta^*}(f(A)))$. Therefore, $f(cl_{\tau^*}(A)) \subseteq cl_{\eta^*}(f(A))$.
- $(3 \Rightarrow 4)$ Let $B \subseteq Y$. Then, $f^{-1}(B) \subseteq X$. From part (3), $f(cl_{\tau^*}(f^{-1}(B))) \subseteq cl_{\eta^*}(ff^{-1}(B))$. Therefore, $f(cl_{\tau^*}(f^{-1}(B))) \subseteq cl_{\eta^*}(B)$. Hence, $cl_{\tau^*}(f^{-1}(B)) \subseteq f^{-1}(cl_{\eta^*}(B))$.
- $(4 \Rightarrow 5)$ Immediate by taking the complement to part (4).
- $(\mathbf{5} \Rightarrow \mathbf{1})$ Let $V \in \eta^*$. Then, $int_{\eta^*}(V) = V$. Thus, $f^{-1}(V) \subseteq int_{\tau^*}(f^{-1}(V))$ by using part (5). But, $int_{\tau^*}(f^{-1}(V)) \subseteq f^{-1}(V)$. Hence, $f^{-1}(V) \in \tau^*$. This implies that f is an MP^* -continuous function.

References

- 1 Blizard and D. Wayne, Multiset theory, Notre Dame Journal of Formal Logic 30 (1989) 36–66.
- 2 Blizard and D. Wayne, Real-valued multisets and fuzzy sets, Fuzzy Sets and Systems 33 (1989) 77-97.
- 3 Blizard and D. Wayne, The development of multiset theory, *Modern Logic* 1 (1991) 319–352.
- 4 S. A. El-Sheikh, Dimension Theory of Bitopological Spaces, Master Thesis, Ain Shams University, Cairo, Egypt (1987).
- 5 S. A. El-Sheikh, R. A-K. Omar and M. Raafat, Multiset bitopological spaces, Asian Journal of Mathematics and Computer Research 8 (2015) 103-115.
- 6 K. P. Girish and J. J. Sunil, Multiset topologies induced by multiset relations, Inform. Sci. 188 (2012) 298-313.
- 7 K. P. Girish and J. J. Sunil, On multiset topologies, Theory and Applications of Mathematics & Computer Science 2 (2012) 37-52.
- 8 K. P. Girish and J. J. Sunil, Relations and functions in multiset context, Inform. Sci. 179 (2009) 758-768.
- 9 K. P. Girish and J. J. Sunil, Rough multisets and information multisystems, Advances in Decision Sciences Article ID 495392 (2011) 1–17.
- 10 S. P. Jena, S. K. Ghosh and B. K. Tripathy, On the theory of bags and lists, Inform. Sci. 132 (2001) 241-254.
- 11 J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963) 71-89.
- 12 J. Mahanta and D. Das, Boundary and exterior of a multiset topology, arXiv 1501.07193v1 (2015).
- 13 W. J. Pervin, Connectedness in bitopological spaces, Indog Math. J. 29 (1967) 369-372.
- 14 I. L. Reilly, On pairwise connected bitopological spaces, Kyungpook Math. J. 11 (1971) 25-28.
- 15 D. Singh, A note on the development of multiset theory, Modern Logic 4 (1994) 405–406.
- 16 D. Singh, A. M. Ibrahim, T. Yohana and J. N. Singh, An overview of the applications of multisets, Novi Sad J. Math 37 (2007) 73-92.
- 17 D. Singh, A. M. Ibrahim, T. Yohana and J. N. Singh, Complementation in multiset theory, International Mathematical Forum 6 (2011) 1877–1884.
- 18 D. Singh and J. N. Singh, Some combinatorics of multisets, International Journal of Mathematical Education in Science and Technology 34 (2003) 489-499.
- 19 J. Šlapal, Relations and topologies, Czechoslovak Mathematical Journal 43 (1993) 141-150.
- 20 J. Swart, Total disconectedness in bitopological spaces and product bitopological spaces, *Indagationes Mathematicae* 74 (1971) 135-145.
- 21 R. R. Yager, On the theory of bags, Int. General Syst. 13 (1986) 23-37.