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1 Introduction

The notion of a multiset is well established both in mathematics and computer science [1, 2, 8,

15, 17, 19]. In mathematics, a multiset is considered to be the generalization of a set. In classical set

theory, a set is a well-defined collection of distinct objects. If repeated occurrences of any object are

allowed in a set, then a mathematical structure, that is known as multiset (mset, for short), is obtained

[3, 9, 16, 18, 21]. For the sake of convenience an mset is written as {k1/x1, k2/x2, ..., kn/xn} in which

the element xi occurs ki times. We observe that each multiplicity ki is a positive integer. The number of

occurrences of an object x in an mset A, which is finite in most of the studies that involve msets, is called

its multiplicity or characteristic value, usually denoted by mA(x) or CA(x) or simply by A(x). One of

the most natural and simplest examples is the mset of prime factors of a positive integer n. The number

504 has the factorization 504 = 233271 which gives the mset X = {3/2, 2/3, 1/7} where CX(2) = 3,

CX(3) = 2, CX(7) = 1. Jena et. al. [10] studied the concept of bags and some properties and results

about this concept. Girish et. al. [6] presented mset topologies induced by mset relations and studied

the concepts of closure operator, interior operator and neighborhood operator on mset. In 2012 Girish et.

al. [7] studied the notions of basis, sub-basis, closed sets, closure, interior and continuous mset function.

A bitopological space (X, τ1, τ2) was introduced by Kelly [11] in 1963, as a method of generalizes

topological spaces (X, τ). Every bitopological space (X, τ1, τ2) can be regarded as a topological space

(X, τ) if τ1 = τ2 = τ . Furthermore, he extended some of the standard results of separation axioms and
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mappings in a topological space to a bitopological space. The notion of connectedness in bitopological

spaces has been studied by Pervin [13], Reily [14] and Swart [20]. In 2015, El-Sheikh et. al. [5] introduced

initially the concept of multiset bitopological spaces and they presented some properties and results about

this concept. In addition, they defined the notion of ij-operators on multiset bitopological spaces and

studied the relationships among them.

In this paper, we firstly introduced some operators on multiset bitopological spaces such as MP ∗-

closure, MP ∗-interior and MP ∗-boundary. Additionally, their properties are presented in detail. More-

over, there exist many of deviations between multiset bitopological spaces and the previous work [4].

Finally, the concept of MP ∗-continuous function is presented in multiset bitopological spaces.

2 Preliminaries

Definition 2.1. [10] An mset X drawn from the set U is represented by a count function X or CX

defined as CX : U → N , where N represents the set of non-negative integers.

Here CX (x) is the number of occurrences of the element x in the mset X. We present the mset X

drawn from the set U = {x1, x2, x3, ..., xn} as X = {m1/x1,m2/x2,m3/x3, ..., mn/xn} where mi is the

number of occurrences of the element xi, i = 1, 2, 3, ..., n in the mset X.

Definition 2.2. [10] A domain U , is defined as a set of elements from which msets are constructed. The

mset space [U ]w is the set of all msets whose elements are in U such that no element in the mset occurs

more than w times.

The mset space [U ]∞ is the set of all msets over a domain U such that there is no limit on the number

of occurrences of an element in a mset. If U = {x1, x2, ..., xk}, then [U ]w = {{m1/x1,m2/x2, ..., mk/xk} :

for i = 1, 2, ..., k; mi ∈ {0, 1, 2, ..., w}}.

Definition 2.3. [10] Let X and Y be two msets drawn from a set U . Then,

1. X = Y if CX(x) = CY (x) for all x ∈ U ,

2. X ⊆ Y if CX(x) 6 CY (x) for all x ∈ U ,

3. P = X ∪ Y if CP (x) = Max{CX(x), CY (x)} for all x ∈ U ,

4. P = X ∩ Y if CP (x) = Min{CX(x), CY (x)} for all x ∈ U ,

5. P = X ⊕ Y if CP (x) = Min{CX(x) + CY (x), w} for all x ∈ U ,

6. P = X ª Y if CP (x) = Max{CX(x) − CY (x), 0} for all x ∈ U , where ⊕ and ª represent mset

addition and mset subtraction respectively.

Definition 2.4. [10] Let X be a mset drawn from the set U . If CX(x) = 0 ∀ x ∈ U , then X is called an

empty mset and denoted by φ, i.e., φ(x) = 0 ∀x.
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If X is an ordinary set with n distinct elements, then the power set P (X) of X contains exactly

2n elements. If X is a mset with n elements (repetitions counted), then the power set P (X) contains

strictly less than 2n elements because singleton submsets do not repeat in P (X). In classical set theory,

Cantor’s power set theorem fails for msets. It is possible to formulate the following reasonable definition

of a power mset of X for finite mset X that preserves Cantor’s power set theorem.

Definition 2.5. [1] (Power Mset) Let X ∈ [U ]w be a mset. Then, the power mset P (X) of X is the set

of all submsets of X. We have Y ∈ P (X) if and only if Y ⊆ X. If Y = φ, then Y ∈1P (X); and if Y 6= φ,

then Y ∈kP (X) where k =
∏

z


 | [X]z |

| [Y ]z |


, the product

∏
z is taken over by distinct elements of z of

the mset Y and | [X]z |= m iff z ∈m X, | [Y ]z |= n iff z ∈n Y , then


 | [X]z |

| [Y ]z |


 =


 m

n


 = m!

n!(m−n)! .

The power set of a mset is the support set of the power mset and is denoted by P ∗(X). The following

theorem was showed the cardinality of the power set of a mset.

Theorem 2.6. [18] Let P (X) be a power mset whose members drawn from the mset

X = {m1/x1,m2/x2, ..., mn/xn} and P ∗(X) be the power set of a mset X. Then, Card(P ∗(X)) = Πn
i=1

(1+mi).

Definition 2.7. [6] Let X ∈ [U ]w and τ ⊆ P ∗(X). Then, τ is called a multiset topology (for short,

M-topology) of X if τ satisfies the following properties:

1. the mset X and the empty mset φ are in τ ,

2. the mset union of the elements of any subcollection of τ is in τ ,

3. the mset intersection of the elements of any finite subcollection of τ is in τ .

Hence, (X,τ) is called an M-topological space. Each element in τ is called an open mset. Additionally,

OM(X) is the set of all open submsets of X.

Definition 2.8. [7] Let (X,τ) be a M-topological space and Y be a submset of X. The collection τY =

{G′
= Y ∩G;G ∈ τ} is a M-topology on Y, called the subspace M-topology.

Remark 2.9. [7] The complement of any submset Y in a mset topological space (X,τ) is defined by :

Y c = X ª Y .

Definition 2.10. [7] A submset Y of a M-topological space X is said to be closed if the mset X ª Y is

open.

Definition 2.11. [7] Let A be a submset of an M-topological space (X, τ). Then,

1. the interior of A is defined as the union of all open msets contained in A and denoted by int(A),

i.e., int(A) = ∪{G ⊆ X : G is an open mset and G ⊆ A}
and Cint(A)(x) = max{CG(x) : G ∈ τ, G ⊆ A},
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2. the closure of A is defined as the intersection of all closed msets containing A and denoted by cl(A),

i.e., cl(A) = ∩{K ⊆ X : K is a closed mset and A ⊆ K}
and Ccl(A)(x) = min{CK(x) : K ∈ τ c, A ⊆ K}.

Proposition 2.12. [6, 7] If (X,τ) is a M-topological space and A, B are two submsets of X. Then, the

following properties are satisfied:

• int(Ac) = (cl(A))c.

• cl(Ac) = (int(A))c.

• cl(A ∪B) = cl(A) ∪ cl(B).

• int(A ∩B) = int(A) ∩ int(B).

Definition 2.13. [12] The boundary of a submset A of X is the intersection of closure of A and closure

of the complement of A. It is denoted by b(A) and defined as b(A) = cl(A) ∩ cl(Ac).

Definition 2.14. [5] A multiset bitopological space is a triple (X, τ1, τ2) where X is a non-empty mset

and τ1,τ2 are arbitrary M-topologies on X.

Definition 2.15. [5] Let (X, τ1, τ2) be a multiset bitopological space over X and Y be a non-empty

submset of X. Then, τY
1 = {Y ∩ F : F ∈ τ1} and τY

2 = {Y ∩ G : G ∈ τ2} are said to be the relative

M-topologies on Y . Also, (Y, τY
1 , τY

2 ) is called a relative multiset bitopological subspace of (X, τ1, τ2).

3 Operators on multiset bitopological spaces

In this section, some operators on multiset bitopological spaces are introduced such as MP ∗-closure,

MP ∗-interior and MP ∗-boundary. Further, their properties are presented. Moreover, the concept of

MP ∗-continuous function is studied.

Definition 3.1. Let (X, τ1, τ2) be a multiset bitopological space. Then, the following operators are

defined as:

1. an MP ∗-closure operator clτ∗ : P ∗(X) → P ∗(X) is defined by:

clτ∗(A) = clτ1(A) ∩ clτ2(A), where A ∈ P ∗(X) and P ∗(X) is the support set of the power mset of

X,

2. an MP ∗-interior operator intτ∗ : P ∗(X) → P ∗(X) is established by:

intτ∗(A) = intτ1(A) ∪ intτ2(A), where A ∈ P ∗(X) and τ∗ = {A ⊆ X : intτ∗(A) = A},

3. an MP ∗-boundary operator bτ∗ : P ∗(X) → P ∗(X) is described by:

bτ∗(A) = bτ1(A) ∩ bτ2(A) = clτ∗(A) ∩ clτ∗(Ac), where A ∈ P ∗(X).

Remark 3.2. Clearly from the above definition, τ∗ is a supra M-topological space because a finite inter-

section of members of τ∗ may not be a member of τ∗ as shown in the following example.
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Example 3.3. Let X = {3/a, 2/b, 1/c} be an mset and τ1 = {X, φ, {3/a}, {2/b, 1/c}}, τ2 = {X, φ, {2/b},
{3/a, 1/c}}. Therefore,

τ∗ = {X, φ, {3/a}, {2/b}, {3/a, 2/b}, {3/a, 1/c}, {2/b, 1/c}}. Assume that A = {3/a, 1/c}, B = {2/b, 1/c}.
Then, A,B ∈ τ∗. But, A ∩B = {1/c} 6∈ τ∗.

Theorem 3.4. Let (X, τ1, τ2) be a multiset bitopological space. Then, MP ∗-closure operator has the

following properties:

1. A ⊆ clτ∗(A) ∀A ∈ P ∗(X),

2. if A ⊆ B, then clτ∗(A) ⊆ clτ∗(B) ∀A,B ∈ P ∗(X),

3. clτ∗(clτ∗(A)) = clτ∗(A),

4. clτ∗(A ∪B) ⊇ clτ∗(A) ∪ clτ∗(B),

5. clτ∗(A ∩B) ⊆ clτ∗(A) ∩ clτ∗(B),

6. clτ∗(φ) = φ and clτ∗(X) = X,

7. (intτ∗(A))c = clτ∗(Ac), where Ac is the complement of A with respect to the mset X,

8. A ∈ τ∗c if and only if clτ∗(A) = A, where τ∗c is the family of τ∗-closed submsets of X.

Proof.

1. Since, clτ∗(A) = clτ1(A) ∩ clτ2(A), A ⊆ clτ1(A) and A ⊆ clτ2(A). Then, A ⊆ clτ1(A) ∩ clτ2(A) =

clτ∗(A).

2. Let A ⊆ B. Then, clτi
(A) ⊆ clτi

(B) where i = 1, 2. Therefore, clτ1(A)∩ clτ2(A) ⊆ clτ1(B)∩ clτ2(B).

Thus, clτ∗(A) ⊆ clτ∗(B).

3. Since, clτ∗(clτ∗(A)) = clτ1(clτ1(A) ∩ clτ2(A)) ∩ clτ2(clτ1(A) ∩ clτ2(A)).

Then, clτ∗(clτ∗(A)) ⊆ (clτ1(clτ1(A)) ∩ clτ1(clτ2(A))) ∩ (clτ2(clτ1(A)) ∩ clτ2(clτ2(A))).

Therefore, clτ∗(clτ∗(A)) ⊆ (clτ1(A) ∩ clτ1(clτ2(A))) ∩ (clτ2(clτ1(A)) ∩ clτ2(A)).

Hence, clτ∗(clτ∗(A)) ⊆ clτ1(A)∩clτ2(A). This implies that clτ∗(clτ∗(A)) ⊆ clτ∗(A). Conversely, from

part (1) we have A ⊆ clτ∗(A). Then, clτ∗(A) ⊆ clτ∗(clτ∗(A)) by part (2). Thus, clτ∗(clτ∗(A)) =

clτ∗(A).

4. Since, A,B ⊆ A ∪B. Then, clτ∗(A) ⊆ clτ∗(A ∪B) and clτ∗(B) ⊆ clτ∗(A ∪B) from part (2). Thus,

clτ∗(A) ∪ clτ∗(B) ⊆ clτ∗(A ∪B).

5. Since, A ∩B ⊆ A,B. Then, clτ∗(A ∩B) ⊆ clτ∗(A) and clτ∗(A ∩B) ⊆ clτ∗(B) from part (2). Thus,

clτ∗(A ∩B) ⊆ clτ∗(A) ∩ clτ∗(B).

6. Clear.

7. Since, (intτ∗(A))c = (intτ1(A) ∪ intτ2(A))c. Then, (intτ∗(A))c = (intτ1(A))c ∩ (intτ2(A))c. There-

fore, (intτ∗(A))c = (clτ1(A
c)) ∩ (clτ2(A

c)). Hence, (intτ∗(A))c = clτ∗(Ac).

5
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8. Immediate by using part (7).

Remark 3.5. In multiset bitopological space (X, τ1, τ2), clτ∗(A ∪ B) 6= clτ∗(A) ∪ clτ∗(B) in general as

shown in the following example.

Example 3.6. From Example 3.3, Let A = {2/a}, B = {1/b}. Then, clτ∗(A) = {3/a}, clτ∗(B) = {2/b},
but clτ∗(A ∪B) = X. Hence, clτ∗(A ∪B) 6= clτ∗(A) ∪ clτ∗(B).

Theorem 3.7. Let (X, τ1, τ2) be a multiset bitopological space. Then, MP ∗-interior operator has the

following properties:

1. intτ∗(A) ⊆ A ∀A ∈ P ∗(X),

2. if A ⊆ B, then intτ∗(A) ⊆ intτ∗(B) ∀A,B ∈ P ∗(X),

3. intτ∗(intτ∗(A)) = intτ∗(A),

4. intτ∗(φ) = φ and intτ∗(X) = X,

5. intτ∗(A ∩B) ⊆ intτ∗(A) ∩ intτ∗(B),

6. intτ∗(A ∪B) ⊇ intτ∗(A) ∪ intτ∗(B).

Proof.

1. Since, intτ∗(A) = intτ1(A) ∪ intτ2(A), intτ1(A) ⊆ A and intτ2(A) ⊆ A. Then, intτ∗(A) ⊆ A.

2. Let A ⊆ B. Then, intτi
(A) ⊆ intτi

(B) where i = 1, 2. Therefore, intτ1(A) ∪ intτ2(A) ⊆ intτ1(B) ∪
intτ2(B). Thus, intτ∗(A) ⊆ intτ∗(B).

3. Since, intτ∗(intτ∗(A)) = intτ1(intτ1(A) ∪ intτ2(A)) ∪ intτ2(intτ1(A) ∪ intτ2(A)).

Then, intτ∗(intτ∗(A)) ⊇ (intτ1(A) ∪ intτ1(intτ2(A))) ∪ (intτ2(intτ1(A)) ∪ intτ2(A)).

Therefore, intτ∗(intτ∗(A)) ⊇ intτ1(A) ∪ intτ2(A).

Hence, intτ∗(intτ∗(A)) ⊇ intτ∗(A).

Conversely, from part (1) we have intτ∗(A) ⊆ A. Then, intτ∗(intτ∗(A)) ⊆ intτ∗(A) by part (2).

Thus, intτ∗(intτ∗(A)) = intτ∗(A).

4. Clear.

5. Since, A ∩ B ⊆ A,B. Then, intτ∗(A ∩ B) ⊆ intτ∗(A) and intτ∗(A ∩ B) ⊆ intτ∗(B) from part (2).

Thus, intτ∗(A ∩B) ⊆ intτ∗(A) ∩ intτ∗(B).

6. Similarly.

Remark 3.8. The following example shows that:

1. clτ∗(A) = A does not imply that A ∈ τ c
1 or A ∈ τ c

2 ,

2. intτ∗(A) = A does not imply that A ∈ τ1 or A ∈ τ2.

6
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Example 3.9. From Example 3.3,

1. Let A = {1/c}. Then, clτ∗(A) = A. But, {1/c} is neither τ1-closed mset nor τ2-closed mset.

2. Let A = {3/a, 2/b}. Then, intτ∗(A) = A. But, A is neither τ1-open mset nor τ2-open mset.

Theorem 3.10. If (X, τ) is a multiset topological space and A ⊆ X, then

1. int(A) ⊆ A ∩ (b(A))c,

2. cl(A) ⊇ A ∪ b(A).

Proof.

1. Since, b(A) = cl(A) ∩ cl(Ac). Then, (b(A))c = (cl(A))c ∪ int(A). Therefore, A ∩ (b(A))c = (A ∩
(cl(A))c)∪ (A∩ int(A)). Thus, A∩ (b(A))c = (A∩ (cl(A))c)∪ int(A). Hence, int(A) ⊆ A∩ (b(A))c.

2. Similarly.

Remark 3.11. The equality of Theorem 3.10 is not true in general as shown in the following example.

Example 3.12. Let X = {3/a, 2/b, 1/c} be an mset and τ = {X, φ, {1/a, 2/b}, {1/a, 1/b}} be an M-

topology on X.

1. If A = {2/a, 1/c}. Then, int(A) = φ. But, A ∩ (b(A))c = {1/a} 6= int(A).

2. If A = {2/a, 2/b}. Then, cl(A) = X. But, A ∪ b(A) = {2/a, 2/b, 1/c} 6= cl(A).

Theorem 3.13. Let (X, τ1, τ2) be a multiset bitopological space. Then, MP ∗-boundary operator has the

following properties:

1. bτ∗(X) = bτ∗(φ) = φ,

2. bτ∗(A) = clτ∗(A) ∩ (intτ∗(A))c ∀A ∈ P ∗(X),

3. intτ∗(A) ⊆ A ∩ (bτ∗(A))c,

4. clτ∗(A) ⊇ A ∪ bτ∗(A),

5. bτ∗(Ac) = bτ∗(A),

6. bτ∗(clτ∗(A)) ⊆ bτ∗(A),

7. bτ∗(intτ∗(A)) ⊆ bτ∗(A).

Proof.

1. Immediate.

2. Since, bτ∗(A) = bτ1(A)∩bτ2(A). Then, bτ∗(A) = (clτ1(A)∩clτ1(A
c))∩(clτ2(A)∩clτ2(A

c)). Therefore,

bτ∗(A) = (clτ1(A) ∩ clτ2(A)) ∩ (clτ1(A
c) ∩ clτ2(A

c)). Thus, bτ∗(A) = clτ∗(A) ∩ clτ∗(Ac). By using

Theorem 3.4, bτ∗(A) = clτ∗(A) ∩ (intτ∗(A))c.

7
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3. Since, intτ1(A) ⊆ A∩(bτ1(A))c and intτ2(A) ⊆ A∩(bτ2(A))c. Then, intτ∗(A) ⊆ (A∩(bτ1(A))c)∪(A∩
(bτ2(A))c). Therefore, intτ∗(A) ⊆ A∩((bτ1(A))c∪(bτ2(A))c). Thus, intτ∗(A) ⊆ A∩(bτ1(A)∩bτ2(A))c.

Hence, intτ∗(A) ⊆ A ∩ (bτ∗(A))c.

4. Since, clτi
(A) ⊇ A ∪ bτi

(A) where i = 1, 2. Then, clτ∗(A) ⊇ (A ∪ bτ1(A)) ∩ (A ∪ bτ2(A)). Thus,

clτ∗(A) ⊇ A ∪ (bτ1(A) ∩ bτ2(A)). Therefore, clτ∗(A) ⊇ A ∪ bτ∗(A).

5. Clearly from the definition of MP ∗-boundary operator.

6. Since, bτ∗(A) = clτ∗(A) ∩ clτ∗(Ac). Then, bτ∗(clτ∗(A)) = clτ∗(clτ∗(A)) ∩ clτ∗(clτ∗(A))c. Therefore,

bτ∗(clτ∗(A)) = clτ∗(A) ∩ clτ∗(intτ∗(Ac)). So,

bτ∗(clτ∗(A)) ⊆ clτ∗(A) ∩ clτ∗(Ac). Hence, bτ∗(clτ∗(A)) ⊆ bτ∗(A).

7. Since, bτ∗(A) = clτ∗(A)∩clτ∗(Ac). Then, bτ∗(intτ∗(A)) = clτ∗(intτ∗(A))∩clτ∗((intτ∗(A))c). There-

fore, bτ∗(intτ∗(A)) ⊆ clτ∗(A) ∩ clτ∗(clτ∗(Ac)). So, bτ∗(intτ∗(A)) ⊆ clτ∗(A) ∩ clτ∗(Ac). Hence,

bτ∗(intτ∗(A)) ⊆ bτ∗(A).

Theorem 3.14. Let (X, τ1, τ2) be a multiset bitopological space. If bτ∗(A) = φ, then A ∈ τ∗ ∩ (τ∗)c.

Proof. Since, bτ∗(A) = φ. Then, clτ∗(A) ∩ clτ∗(Ac) = φ. Therefore, clτ∗(A) ⊆ (clτ∗(Ac))c =

intτ∗(A). Thus, A ⊆ clτ∗(A) ⊆ intτ∗(A) ⊆ A. Hence, A ∈ τ∗ ∩ (τ∗)c.

Remark 3.15. The converse of Theorem 3.14 is not true in general as shown in the following example.

Example 3.16. Let X = {3/a, 2/b, 1/c} be an mset and

τ1 = {X, φ, {2/a}, {1/b}, {2/a, 1/b}}, τ2 = {X, φ, {1/a}, {1/a, 1/c}, {1/b, 1/c},
{1/c}, {1/a, 1/b, 1/c}}. Therefore,

τ∗ = {X, φ, {1/a}, {1/b}, {1/c}, {2/a}, {1/a, 1/b}, {1/a, 1/c}, {1/b, 1/c}, {2/a, 1/b},
{2/a, 1/c}, {1/a, 1/b, 1/c}, {2/a, 1/b, 1/c}}. Assume that A = {1/a, 1/b} ∈ τ∗ ∩ τ∗c. But, bτ∗(A) =

clτ∗(A) ∩ clτ∗(Ac) = {1/a, 1/b} ∩ {2/a, 1/b, 1/c} = {1/a, 1/b} 6= φ. Hence, A ∈ τ∗ ∩ τ∗c ; bτ∗(A) = φ.

Definition 3.17. Let (X, τ1, τ2) and (Y, η1, η2) be two multiset bitopological spaces. Then, f : X → Y

is called an MP ∗-continuous function if and only if f−1(V ) ∈ τ∗ ∀ V ∈ η∗, where η∗ = {B ⊆ Y :

intη∗(B) = B}.

Theorem 3.18. Let (X, τ1, τ2) and (Y, η1, η2) be two multiset bitopological spaces and f : X → Y is an

mset function. Then, the following conditions are equivalent:

1. f is an MP ∗-continuous function,

2. f−1(H) ∈ τ∗c ∀H ∈ η∗c,

3. f(clτ∗(A)) ⊆ clη∗(f(A)) ∀A ⊆ X,

4. clτ∗(f−1(B)) ⊆ f−1(clη∗(B)) ∀B ⊆ Y ,

5. f−1(intη∗(B)) ⊆ intτ∗(f−1(B)) ∀B ⊆ Y .

Proof.

8
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(1 ⇒ 2) Let f is an MP ∗-continuous function and H ∈ η∗c. Then, Hc ∈ η∗. Thus, f−1(Hc) ∈ τ∗.

Therefore, (f−1(Hc))c ∈ τ∗c. Hence, f−1(H) ∈ τ∗c.

(2 ⇒ 3) Let A ⊆ X. Since, f(A) ⊆ clη∗(f(A)). Then, A ⊆ f−1(clη∗(f(A))). But, clη∗(f(A)) is a closed

mset over Y . So, f−1(clη∗(f(A))) is also a closed mset over X. Hence, clτ∗(A) ⊆ f−1(clη∗(f(A))).

Therefore, f(clτ∗(A)) ⊆ clη∗(f(A)).

(3 ⇒ 4) Let B ⊆ Y . Then, f−1(B) ⊆ X. From part (3), f(clτ∗(f−1(B))) ⊆ clη∗(ff−1(B)). Therefore,

f(clτ∗(f−1(B))) ⊆ clη∗(B). Hence, clτ∗(f−1(B)) ⊆ f−1(clη∗(B)).

(4 ⇒ 5) Immediate by taking the complement to part (4).

(5 ⇒ 1) Let V ∈ η∗. Then, intη∗(V ) = V . Thus, f−1(V ) ⊆ intτ∗(f−1(V )) by using part (5). But,

intτ∗(f−1(V )) ⊆ f−1(V ). Hence, f−1(V ) ∈ τ∗. This implies that f is an MP ∗-continuous function.
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