www.sajm-online.com ISSN 2251-1512

Degree resistance distance of lollipop graphs

RESEARCH ARTICLE

Jianhui Fu^{0*}, Guifang Liu⁰, Xia Cai⁰, Ting Zeng⁰, Lihui Yang⁰

① College of Mathematics and Computational Science, Hunan City University, Yiyang, Hunan 413000, P.R. China E-mail: jhf1573@163.com

Received: Jan-29-2015; Accepted: Aug-15-2015 *Corresponding author Projects supported by Natural Science Foundation of Hunan Province (No: 2015JJ3031), Scientific Research Fund of Hunan Provincial Education Department(14A206, 15C0248), Science and technology project of Hunan Province(No. 2012FJ4274).

Abstract The resistance distance $r_G(u, v)$ between two vertices u, v of a connected graph G is defined as the effective resistance between them in the corresponding electrical network constructed from G by replacing each edge of G with a unit resistor. Let G be a connected graph, the degree resistance distance of G is defined as $D_R(G) = \sum_{\{u,v\}\subseteq V(G)} [d(u) + d(v)]r(u,v)$, where d(u) (and d(v)) is the degree of the vertex u (and v). The lollipop graph $L_{n,k}$ is a class of special unicyclic graphs which comes from joining an endpoint of P_{n-k} to one vertex of the cycle C_k . In this paper, the authors firstly give the formula for computing the degree resistance distance of $L_{n,k}$, and then determine graphs in $L_{n,k}$ with the maximum and second maximum degree resistance distance.

Key Words Resistance distance; Kirchhoff index; Degree resistance distance; Lollipop graphMSC 2010 05C35, 05C90

1 Introduction

All graphs considered here are both connected and simple if not stated in particular. The distance between vertices u and v of graph G, denoted by d(u, v), is the length of a shortest path between them; d(u) is the degree of the vertex u; n, m are the number of vertices and edges of G, respectively. The Wiener index was introduced by American chemistry Harold Wiener in 1947, defined as [1]

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$
(1.1)

A modified version of the Wiener index is the degree distance, was introduce by A. A. Dobrynin and A. A. Kochetova[2], defined as

$$D(G) = \sum_{\{u,v\} \subseteq V(G)} [d(u) + d(v)]d(u,v)$$
(1.2)

Citation: Jianhui Fu, Guifang Liu, Xia Cai, Ting Zeng, Lihui Yang, Degree resistance distance of lollipop graphs, South Asian J Math, 2015, 5(5), 223-226.

Resistance distance was introduced by Klein and Randić [3] in 1993, on the basis of electrical network theory. They viewed a graph G as an electrical network N such that each edge of G is assumed to be a unit resistor. The resistance distance between the vertices u and v of a graph G, are denoted by r(u, v), is defined to be the effective resistance between nodes $u, v \in N$. The Kirchhoff index Kf(G) of a graph G is defined as [3, 4]

$$Kf(G) = \sum_{\{u,v\} \subseteq V(G)} r(u,v)$$
 (1.3)

If G is a tree, then r(u, v) = d(u, v) for any two vertices u and v, the Kirchhoff and Wiener indices of trees coincide. The degree resistance distance was introduced by I. Gutman, L. Feng and G. Yu in [5]:

$$D_R(G) = \sum_{\{u,v\} \subseteq V(G)} [d(u) + d(v)]r(u,v)$$
(1.4)

They investigated the degree resistance distance of unicyclic graphs, determined the unicyclic graphs with the minimum and the second minimum degree resistance distance. Chen et al., [6] determined the unicyclic graphs with the maximum and the second maximum degree resistance distance. J. L. Palacios in [7] gave tight upper and lower bounds for the degree resistance distance of a connected undirected graph.

If G is a tree, then r(u, v) = d(u, v) for any two vertices u and v. Consequently, the degree distances and additive degree Kirchhoff index coincide as well, i.e., $D_R(G) = 4W(G) - n(n-1)$.

A graph G is called a unicyclic graph if it contains exactly one cycle. $\mathscr{U}(n)$ be the set of all unicyclic graphs with n vertices, S_n and P_n be the star and the path on n vertices, respectively. The lollipop graph $L_{n,k}$ is obtained by appending a k-cycle C_k to a pendant vertex of a path on n-k vertices (see Fig. 1)

Figure 1. The lollipop graph $L_{n,k}$

The paper is organized as follows. In Section 2 we state some preparatory results, whereas in Section 3 we investigated the degree resistance distance $L_{n,k}$, and give the maximum and second maximum degree resistance distance of $L_{n,k}$.

2 Preliminary Results

For a graph G with $v \in V(G)$, G - v denotes the graph obtained from G by deleting v (and its incident edges). For an edge uv of the graph G (the complement of G, respectively), G - uv(G + uv), respectively) denotes the graph resulting from G by deleting (adding, respectively) the edge uv.

Let $u \in V(G)$, and

$$r_u(G) = \sum_{v \in V(G)} r(v, u), \quad S'_u(G) = \sum_{v \in V(G)} d(v)r(v, u)$$
(2.1)

Let C_k be the cycle on $k \ge 3$ vertices, for any two vertices $v_i, v_j \in V(C_k)$ with i < j, by Ohm's law, we have $r(v_i, v_j) = \frac{(j-i)(k+i-j)}{k}$. For any vertex $u \in V(C_k)$, it's suffice to see that $r_u(C_k) = \frac{1}{6}(k^2-1), S'_u(C_k) = \frac{1}{3}(k^2-1), Kf(C_k) = \frac{1}{12}(k^3-k).$

Lemma 2.1([8]). Let T be any n vertices trees different from path P_n and S_n . Then $(n-1)^2 \leq W(T) \leq \frac{1}{6}(n^3-n)$, the left equality holds if and only if $G \cong S_n$ and the right does if and only if $G \cong P_n$.

Lemma 2.2([2]). Let x be a cut vertex of a connected graph and a and b be vertices occurring in different components which arise upon deletion of x, then $r_G(a, b) = r_G(a, x) + r_G(x, b)$.

Lemma 2.3([5]). Let G_1 and G_2 be connected graphs with disjoint vertex sets, with n_1 and n_2 vertices, and with m_1 and m_2 edges, respectively. Let $u_1 \in V(G_1)$, $u_2 \in V(G_2)$, constructing the graph G by identifying the vertices u_1 and u_2 , and denote the so obtained vertex by u. Then

$$D_R(G) = D_R(G_1) + D_R(G_2) + 2m_2r_{u_1}(G_1) + 2m_1r_{u_2}(G_2) + (n_2 - 1)S'_{u_1}(G_1) + (n_1 - 1)S'_{u_2}(G_2).$$

3 Main results

Firstly, we'll derive a formula for computing the degree resistance distance of $L_{n,k}$.

Theorem 3.1. Let $G \in L_{n,k}$, then

$$D_R(L_{n,k}) = k^3 - \frac{1}{3}(4n+3)k^2 + nk + \frac{2}{3}n^3 - \frac{1}{3}n.$$

Proof. Let $G_1 = C_k$, $G_2 = P_{n+1-k}$. By Lemma 2.3, one has,

$$D_R(L_{n,k})$$

= $D_R(C_k) + D_R(P_{n+1-k}) + 2m_2 r_{v_0}(C_k) + 2m_1 r_{v_0}(P_{n+1-k}) + (n_2 - 1)S'_{v_0}(C_k)$
+ $(n_1 - 1)S'_{v_0}(P_{n+1-k}).$

Further, $D_R(C_k) = 4Kf(C_k) = \frac{k^3 - k}{3}$,

$$D_R(P_{n+1-k}) = 4W(P_{n+1-k}) - (n+1-k)(n-k)$$

= $4\binom{n+2-k}{3} - (n+1-k)(n-k)$
= $\frac{2}{3}(n^3-k^3) - 2nk(n-k) + (n-k)^2 + \frac{1}{3}(n-k)$
= $\frac{1}{3}(n-k)[2(n-k)^2 + 3(n-k) + 1]$

 $r_{v_0}(C_k) = \frac{k^2 - 1}{6}, r_{v_0}(P_{n+1-k}) = \frac{(n-k)(n+1-k)}{2}; S'_{v_0}(C_k) = \frac{k^2 - 1}{3}, S'_{v_0}(P_{n+1-k}) = (n-k)^2.$ Therefore, $D_R(L_{n,k}) = k^3 - \frac{1}{3}(4n+3)k^2 + nk + \frac{2}{3}n^3 - \frac{1}{3}n.$

This completes the proof.

225

Secondly, we give an order $L_{n,k}$ with the maximum and the second maximum degree resistance distance.

Theorem 3.2. Let $G \in L_{n,k}$, one has (i) $D_R(G) \leq \frac{2n^3}{3} - \frac{28n}{3} + 18$, with the equality holds if and only if $G \cong L_{n,3}$; (ii) if $G \not\cong L_{n,3}$, then $D_R(G) \leqslant \frac{2n^3}{3} - \frac{53n}{3} + 48$, with the equality holds if and only if $G \cong L_{n,4}$. **Proof.** Let $f(k) := D_R(L_{n,k}) = k^3 - \frac{1}{3}(4n+3)k^2 + nk + \frac{2}{3}n^3 - \frac{1}{3}n, 4 \leqslant k \leqslant n$. In what follows, we'll discuss the monotonicity of f(k) on interval $I := [3, 4, \cdots, n]$. The first derivative of f(k) is

$$\frac{\partial f(k)}{\partial l} = 3k^2 - \frac{2}{3}(4n+3)k + n.$$

The roots of $\frac{\partial f(k)}{\partial k} = 0$ are $k_{1,2} = \frac{(4n+3) \pm \sqrt{16n^2 - 3n + 9}}{9}$. It is easy to see that for $n \ge 3$,

$$k_1 < \frac{4n+3-(4n-24)}{9} = 3, \quad k_2 > \frac{4n+3+(24-4n)}{9} = 3.$$

It's easy to verify that $k_2 < n$. Then, one has

(i) when $k \in [3, k_2)$, $\frac{\partial f(k)}{\partial k} < 0$, which indicates that f(k) is decreasing on $[3, k_2)$;

(ii) when $k \in [k_2, n]$, $\frac{\partial f(k)}{\partial k} > 0$, which indicates that f(k) is increasing on $[k_2, n]$. So, the maximum value of f(k) must occurred between f(3) and f(n). It's suffice to see that f(3) - f(n) = 1 $\frac{1}{3}(n^3-27n+54)$. If $G \not\cong L_{n,3}$, then the second maximum degree resistance distance of $D_R(G)$ is $D_R(L_{n,4})$ or $D_R(L_{n,n})$. By Theorem 3.1, one has, $D_R(L_{n,4}) = \frac{2}{3}n^3 - \frac{53}{3}n + 48$, $D_R(L_{n,n}) = \frac{1}{3}n^3 - \frac{1}{3}n$. Obviously, $D_R(L_{n,4}) > D_R(L_{n,n}).$

References -

- 1 H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
- 2 A. A. Dobrynin and A. A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082-1086.
- 3 D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81-95.
- D. Bonchev, A. T. Balaban, X. Liu, D. J. Klein, Molecular cyclicity and centricity of polycyclic graphs I. Cyclicity 4 based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1994) 1-20.
- I. Gutman, L. Feng, G. Yu, Degree resistance distance of unicyclic graphs, Transactions on Combinatorics, 1(2) (2012) 527-40.
- 6 S. Chen, Q. Chen, X. Cai, Z. Guo, Maximal Degree Resistance Distance of Unicyclic Graphs, MATCH Commun. Math. Comput. Chem. 75 (2016) 000-000.
- 7 J. L. Palacios, Upper and lower bounds for the additive degree Kirchhoff index, MATCH Commun. Math. Comput. Chem. 70 (2013) 651-655.
- A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 8 (2001) 211-249.