# Degree resistance distance of lollipop graphs 

Jianhui $\mathrm{Fu}^{\oplus *}$, Guifang Liu ${ }^{\oplus}$, Xia $\mathrm{Cai}^{\oplus}$, Ting Zeng ${ }^{\oplus}$, Lihui $\mathrm{Yang}^{\oplus}$<br>(1) College of Mathematics and Computational Science, Hunan City University, Yiyang, Hunan 413000, P.R. China<br>E-mail: jhf1573@163.com<br>Received: Jan-29-2015; Accepted: Aug-15-2015 *Corresponding author<br>Projects supported by Natural Science Foundation of Hunan Province (No: 2015JJ3031), Scientific Research Fund of Hunan Provincial Education Department(14A206, 15C0248), Science and technology project of Hunan Province(No. 2012FJ4274).


#### Abstract

The resistance distance $r_{G}(u, v)$ between two vertices $u, v$ of a connected graph $G$ is defined as the effective resistance between them in the corresponding electrical network constructed from $G$ by replacing each edge of $G$ with a unit resistor. Let $G$ be a connected graph, the degree resistance distance of $G$ is defined as $D_{R}(G)=\sum_{\{u, v\} \subseteq V(G)}[d(u)+d(v)] r(u, v)$, where $d(u)$ (and $d(v)$ ) is the degree of the vertex $u$ (and $v$ ). The lollipop graph $L_{n, k}$ is a class of special unicyclic graphs which comes from joining an endpoint of $P_{n-k}$ to one vertex of the cycle $C_{k}$. In this paper, the authors firstly give the formula for computing the degree resistance distance of $L_{n, k}$, and then determine graphs in $L_{n, k}$ with the maximum and second maximum degree resistance distance.


Key Words Resistance distance; Kirchhoff index; Degree resistance distance; Lollipop graph
MSC 2010 05C35, 05C90

## 1 Introduction

All graphs considered here are both connected and simple if not stated in particular. The distance between vertices $u$ and $v$ of graph $G$, denoted by $d(u, v)$, is the length of a shortest path between them; $d(u)$ is the degree of the vertex $u ; n, m$ are the number of vertices and edges of $G$, respectively. The Wiener index was introduced by American chemistry Harold Wiener in 1947, defined as [1]

$$
\begin{equation*}
W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v) \tag{1.1}
\end{equation*}
$$

A modified version of the Wiener index is the degree distance, was introduce by A. A. Dobrynin and A. A. Kochetova[2], defined as

$$
\begin{equation*}
D(G)=\sum_{\{u, v\} \subseteq V(G)}[d(u)+d(v)] d(u, v) \tag{1.2}
\end{equation*}
$$

Resistance distance was introduced by Klein and Randić [3] in 1993, on the basis of electrical network theory. They viewed a graph $G$ as an electrical network $N$ such that each edge of $G$ is assumed to be a unit resistor. The resistance distance between the vertices $u$ and $v$ of a graph $G$, are denoted by $r(u, v)$, is defined to be the effective resistance between nodes $u, v \in N$. The Kirchhoff index $K f(G)$ of a graph $G$ is defined as $[3,4]$

$$
\begin{equation*}
K f(G)=\sum_{\{u, v\} \subseteq V(G)} r(u, v) \tag{1.3}
\end{equation*}
$$

If $G$ is a tree, then $r(u, v)=d(u, v)$ for any two vertices $u$ and $v$, the Kirchhoff and Wiener indices of trees coincide. The degree resistance distance was introduced by I. Gutman, L. Feng and G. Yu in [5]:

$$
\begin{equation*}
D_{R}(G)=\sum_{\{u, v\} \subseteq V(G)}[d(u)+d(v)] r(u, v) \tag{1.4}
\end{equation*}
$$

They investigated the degree resistance distance of unicyclic graphs, determined the unicyclic graphs with the minimum and the second minimum degree resistance distance. Chen et al., [6] determined the unicyclic graphs with the maximum and the second maximum degree resistance distance. J. L. Palacios in [7] gave tight upper and lower bounds for the degree resistance distance of a connected undirected graph.

If $G$ is a tree, then $r(u, v)=d(u, v)$ for any two vertices $u$ and $v$. Consequently, the degree distances and additive degree Kirchhoff index coincide as well, i,e., $D_{R}(G)=4 W(G)-n(n-1)$.

A graph $G$ is called a unicyclic graph if it contains exactly one cycle. $\mathscr{U}(n)$ be the set of all unicyclic graphs with $n$ vertices, $S_{n}$ and $P_{n}$ be the star and the path on $n$ vertices, respectively. The lollipop graph $L_{n, k}$ is obtained by appending a $k$-cycle $C_{k}$ to a pendant vertex of a path on $n-k$ vertices (see Fig. 1)


Figure 1. The lollipop graph $L_{n, k}$

The paper is organized as follows. In Section 2 we state some preparatory results, whereas in Section 3 we investigated the degree resistance distance $L_{n, k}$, and give the maximum and second maximum degree resistance distance of $L_{n, k}$.

## 2 Preliminary Results

For a graph $G$ with $v \in V(G), G-v$ denotes the graph obtained from $G$ by deleting $v$ (and its incident edges). For an edge $u v$ of the graph $G$ (the complement of $G$, respectively), $G-u v(G+u v$, respectively) denotes the graph resulting from $G$ by deleting (adding, respectively) the edge $u v$.

Let $u \in V(G)$, and

$$
\begin{equation*}
r_{u}(G)=\sum_{v \in V(G)} r(v, u), \quad S_{u}^{\prime}(G)=\sum_{v \in V(G)} d(v) r(v, u) \tag{2.1}
\end{equation*}
$$

Let $C_{k}$ be the cycle on $k \geqslant 3$ vertices, for any two vertices $v_{i}, v_{j} \in V\left(C_{k}\right)$ with $i<j$, by Ohm's law, we have $r\left(v_{i}, v_{j}\right)=\frac{(j-i)(k+i-j)}{k}$. For any vertex $u \in V\left(C_{k}\right)$, it's suffice to see that $r_{u}\left(C_{k}\right)=$ $\frac{1}{6}\left(k^{2}-1\right), S_{u}^{\prime}\left(C_{k}\right)=\frac{1}{3}\left(k^{2}-1\right), K f\left(C_{k}\right)=\frac{1}{12}\left(k^{3}-k\right)$.
Lemma 2.1([8]). Let $T$ be any $n$ vertices trees different from path $P_{n}$ and $S_{n}$. Then $(n-1)^{2} \leqslant W(T) \leqslant$ $\frac{1}{6}\left(n^{3}-n\right)$, the left equality holds if and only if $G \cong S_{n}$ and the right does if and only if $G \cong P_{n}$.
Lemma 2.2([2]). Let $x$ be a cut vertex of a connected graph and $a$ and $b$ be vertices occurring in different components which arise upon deletion of $x$, then $r_{G}(a, b)=r_{G}(a, x)+r_{G}(x, b)$.

Lemma 2.3([5]). Let $G_{1}$ and $G_{2}$ be connected graphs with disjoint vertex sets, with $n_{1}$ and $n_{2}$ vertices, and with $m_{1}$ and $m_{2}$ edges, respectively. Let $u_{1} \in V\left(G_{1}\right), u_{2} \in V\left(G_{2}\right)$, constructing the graph $G$ by identifying the vertices $u_{1}$ and $u_{2}$, and denote the so obtained vertex by $u$. Then

$$
D_{R}(G)=D_{R}\left(G_{1}\right)+D_{R}\left(G_{2}\right)+2 m_{2} r_{u_{1}}\left(G_{1}\right)+2 m_{1} r_{u_{2}}\left(G_{2}\right)+\left(n_{2}-1\right) S_{u_{1}}^{\prime}\left(G_{1}\right)+\left(n_{1}-1\right) S_{u_{2}}^{\prime}\left(G_{2}\right)
$$

## 3 Main results

Firstly, we'll derive a formula for computing the degree resistance distance of $L_{n, k}$.
Theorem 3.1. Let $G \in L_{n, k}$, then

$$
D_{R}\left(L_{n, k}\right)=k^{3}-\frac{1}{3}(4 n+3) k^{2}+n k+\frac{2}{3} n^{3}-\frac{1}{3} n
$$

Proof. Let $G_{1}=C_{k}, G_{2}=P_{n+1-k}$. By Lemma 2.3, one has,

$$
\begin{aligned}
& D_{R}\left(L_{n, k}\right) \\
= & D_{R}\left(C_{k}\right)+D_{R}\left(P_{n+1-k}\right)+2 m_{2} r_{v_{0}}\left(C_{k}\right)+2 m_{1} r_{v_{0}}\left(P_{n+1-k}\right)+\left(n_{2}-1\right) S_{v_{0}}^{\prime}\left(C_{k}\right) \\
& +\left(n_{1}-1\right) S_{v_{0}}^{\prime}\left(P_{n+1-k}\right) .
\end{aligned}
$$

Further, $D_{R}\left(C_{k}\right)=4 K f\left(C_{k}\right)=\frac{k^{3}-k}{3}$,

$$
\begin{aligned}
& D_{R}\left(P_{n+1-k}\right)=4 W\left(P_{n+1-k}\right)-(n+1-k)(n-k) \\
&=4\binom{n+2-k}{3}-(n+1-k)(n-k) \\
&=\frac{2}{3}\left(n^{3}-k^{3}\right)-2 n k(n-k)+(n-k)^{2}+\frac{1}{3}(n-k) \\
&=\frac{1}{3}(n-k)\left[2(n-k)^{2}+3(n-k)+1\right] \\
& r_{v_{0}}\left(C_{k}\right)=\frac{k^{2}-1}{6}, r_{v_{0}}\left(P_{n+1-k}\right)=\frac{(n-k)(n+1-k)}{2} ; S_{v_{0}}^{\prime}\left(C_{k}\right)=\frac{k^{2}-1}{3}, S_{v_{0}}^{\prime}\left(P_{n+1-k}\right)=(n-k)^{2} .
\end{aligned}
$$

Therefore,

$$
D_{R}\left(L_{n, k}\right)=k^{3}-\frac{1}{3}(4 n+3) k^{2}+n k+\frac{2}{3} n^{3}-\frac{1}{3} n .
$$

This completes the proof.

Secondly, we give an order $L_{n, k}$ with the maximum and the second maximum degree resistance distance.

Theorem 3.2. Let $G \in L_{n, k}$, one has
(i) $D_{R}(G) \leqslant \frac{2 n^{3}}{3}-\frac{28 n}{3}+18$, with the equality holds if and only if $G \cong L_{n, 3}$;
(ii) if $G \not \approx L_{n, 3}$, then $D_{R}(G) \leqslant \frac{2 n^{3}}{3}-\frac{53 n}{3}+48$, with the equality holds if and only if $G \cong L_{n, 4}$.

Proof. Let $f(k):=D_{R}\left(L_{n, k}\right)=k^{3}-\frac{1}{3}(4 n+3) k^{2}+n k+\frac{2}{3} n^{3}-\frac{1}{3} n, 4 \leqslant k \leqslant n$. In what follows, we'll discuss the monotonicity of $f(k)$ on interval $I:=[3,4, \cdots, n]$. The first derivative of $f(k)$ is

$$
\frac{\partial f(k)}{\partial l}=3 k^{2}-\frac{2}{3}(4 n+3) k+n
$$

The roots of $\frac{\partial f(k)}{\partial k}=0$ are $k_{1,2}=\frac{(4 n+3) \mp \sqrt{16 n^{2}-3 n+9}}{9}$. It is easy to see that for $n \geqslant 3$,

$$
k_{1}<\frac{4 n+3-(4 n-24)}{9}=3, \quad k_{2}>\frac{4 n+3+(24-4 n)}{9}=3
$$

It's easy to verify that $k_{2}<n$. Then, one has
(i) when $k \in\left[3, k_{2}\right), \frac{\partial f(k)}{\partial k}<0$, which indicates that $f(k)$ is decreasing on $\left[3, k_{2}\right)$;
(ii) when $k \in\left[k_{2}, n\right], \frac{\partial f(k)}{\partial k}>0$, which indicates that $f(k)$ is increasing on $\left[k_{2}, n\right]$.

So, the maximum value of $f(k)$ must occurred between $f(3)$ and $f(n)$. It's suffice to see that $f(3)-f(n)=$ $\frac{1}{3}\left(n^{3}-27 n+54\right)$. If $G \not \approx L_{n, 3}$, then the second maximum degree resistance distance of $D_{R}(G)$ is $D_{R}\left(L_{n, 4}\right)$ or $D_{R}\left(L_{n, n}\right)$. By Theorem 3.1, one has, $D_{R}\left(L_{n, 4}\right)=\frac{2}{3} n^{3}-\frac{53}{3} n+48, D_{R}\left(L_{n, n}\right)=\frac{1}{3} n^{3}-\frac{1}{3} n$. Obviously, $D_{R}\left(L_{n, 4}\right)>D_{R}\left(L_{n, n}\right)$.

## References

1 H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
2 A. A. Dobrynin and A. A. Kochetova, Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082-1086.
3 D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81-95.
4 D. Bonchev, A. T. Balaban, X. Liu, D. J. Klein, Molecular cyclicity and centricity of polycyclic graphs I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1994) 1-20.
5 I. Gutman, L. Feng, G. Yu, Degree resistance distance of unicyclic graphs, Transactions on Combinatorics, 1(2) (2012) 27-40.
6 S. Chen, Q. Chen, X. Cai, Z. Guo, Maximal Degree Resistance Distance of Unicyclic Graphs, MATCH Commun. Math. Comput. Chem. 75 (2016) 000-000.
7 J. L. Palacios, Upper and lower bounds for the additive degree Kirchhoff index, MATCH Commun. Math. Comput. Chem. 70 (2013) 651-655.
8 A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001) 211-249.

