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Abstract The resistance distance rG(u, v) between two vertices u, v of a connected graph G is defined

as the effective resistance between them in the corresponding electrical network constructed from G by

replacing each edge of G with a unit resistor. Let G be a connected graph, the degree resistance distance

of G is defined as DR(G) =
∑

{u,v}⊆V (G)

[d(u) + d(v)]r(u, v), where d(u) (and d(v)) is the degree of the

vertex u (and v). The lollipop graph Ln,k is a class of special unicyclic graphs which comes from joining

an endpoint of Pn−k to one vertex of the cycle Ck. In this paper, the authors firstly give the formula for

computing the degree resistance distance of Ln,k, and then determine graphs in Ln,k with the maximum

and second maximum degree resistance distance.
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1 Introduction

All graphs considered here are both connected and simple if not stated in particular. The distance

between vertices u and v of graph G, denoted by d(u, v), is the length of a shortest path between them;

d(u) is the degree of the vertex u; n,m are the number of vertices and edges of G, respectively. The

Wiener index was introduced by American chemistry Harold Wiener in 1947, defined as [1]

W (G) =
∑

{u,v}⊆V (G)

d(u, v) (1.1)

A modified version of the Wiener index is the degree distance, was introduce by A. A. Dobrynin and

A. A. Kochetova[2], defined as

D(G) =
∑

{u,v}⊆V (G)

[d(u) + d(v)]d(u, v) (1.2)
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Resistance distance was introduced by Klein and Randić [3] in 1993, on the basis of electrical network

theory. They viewed a graph G as an electrical network N such that each edge of G is assumed to be a

unit resistor. The resistance distance between the vertices u and v of a graph G, are denoted by r(u, v),

is defined to be the effective resistance between nodes u, v ∈ N . The Kirchhoff index Kf(G) of a graph

G is defined as [3, 4]

Kf(G) =
∑

{u,v}⊆V (G)

r(u, v) (1.3)

If G is a tree, then r(u, v) = d(u, v) for any two vertices u and v, the Kirchhoff and Wiener indices

of trees coincide. The degree resistance distance was introduced by I. Gutman, L. Feng and G. Yu in [5]:

DR(G) =
∑

{u,v}⊆V (G)

[d(u) + d(v)]r(u, v) (1.4)

They investigated the degree resistance distance of unicyclic graphs, determined the unicyclic graphs

with the minimum and the second minimum degree resistance distance. Chen et al., [6] determined the

unicyclic graphs with the maximum and the second maximum degree resistance distance. J. L. Palacios

in [7] gave tight upper and lower bounds for the degree resistance distance of a connected undirected

graph.

If G is a tree, then r(u, v) = d(u, v) for any two vertices u and v. Consequently, the degree distances

and additive degree Kirchhoff index coincide as well, i,e., DR(G) = 4W (G)− n(n− 1).

A graph G is called a unicyclic graph if it contains exactly one cycle. U (n) be the set of all unicyclic

graphs with n vertices, Sn and Pn be the star and the path on n vertices, respectively. The lollipop graph

Ln,k is obtained by appending a k-cycle Ck to a pendant vertex of a path on n− k vertices (see Fig. 1)

.............Ck v0
v1 vn−k

Figure 1. The lollipop graph Ln,k

1

The paper is organized as follows. In Section 2 we state some preparatory results, whereas in Section

3 we investigated the degree resistance distance Ln,k, and give the maximum and second maximum degree

resistance distance of Ln,k.

2 Preliminary Results

For a graph G with v ∈ V (G), G − v denotes the graph obtained from G by deleting v (and its

incident edges). For an edge uv of the graph G (the complement of G, respectively), G − uv(G + uv,

respectively) denotes the graph resulting from G by deleting (adding, respectively) the edge uv.

Let u ∈ V (G), and

ru(G) =
∑

v∈V (G)

r(v, u), S′u(G) =
∑

v∈V (G)

d(v)r(v, u) (2.1)
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Let Ck be the cycle on k > 3 vertices, for any two vertices vi, vj ∈ V (Ck) with i < j, by Ohm’s

law, we have r(vi, vj) =
(j − i)(k + i− j)

k
. For any vertex u ∈ V (Ck), it’s suffice to see that ru(Ck) =

1
6
(k2 − 1), S′u(Ck) =

1
3
(k2 − 1), Kf(Ck) =

1
12

(k3 − k).

Lemma 2.1([8]). Let T be any n vertices trees different from path Pn and Sn. Then (n−1)2 6 W (T ) 6
1
6
(n3 − n), the left equality holds if and only if G ∼= Sn and the right does if and only if G ∼= Pn.

Lemma 2.2([2]). Let x be a cut vertex of a connected graph and a and b be vertices occurring in different

components which arise upon deletion of x, then rG(a, b) = rG(a, x) + rG(x, b).

Lemma 2.3([5]). Let G1 and G2 be connected graphs with disjoint vertex sets, with n1 and n2 vertices,

and with m1 and m2 edges, respectively. Let u1 ∈ V (G1), u2 ∈ V (G2), constructing the graph G by

identifying the vertices u1 and u2, and denote the so obtained vertex by u. Then

DR(G) = DR(G1) + DR(G2) + 2m2ru1(G1) + 2m1ru2(G2) + (n2 − 1)S′u1
(G1) + (n1 − 1)S′u2

(G2).

3 Main results

Firstly, we’ll derive a formula for computing the degree resistance distance of Ln,k.

Theorem 3.1. Let G ∈ Ln,k, then

DR(Ln,k) = k3 − 1
3
(4n + 3)k2 + nk +

2
3
n3 − 1

3
n.

Proof. Let G1 = Ck, G2 = Pn+1−k. By Lemma 2.3, one has,

DR(Ln,k)

= DR(Ck) + DR(Pn+1−k) + 2m2rv0
(Ck) + 2m1rv0

(Pn+1−k) + (n2 − 1)S′v0
(Ck)

+ (n1 − 1)S′v0
(Pn+1−k).

Further, DR(Ck) = 4Kf(Ck) =
k3 − k

3
,

DR(Pn+1−k) = 4W (Pn+1−k)− (n + 1− k)(n− k)

= 4
(

n + 2− k

3

)
− (n + 1− k)(n− k)

=
2
3
(n3 − k3)− 2nk(n− k) + (n− k)2 +

1
3
(n− k)

=
1
3
(n− k)[2(n− k)2 + 3(n− k) + 1]

rv0
(Ck) =

k2 − 1
6

, rv0
(Pn+1−k) =

(n− k)(n + 1− k)
2

; S′v0
(Ck) =

k2 − 1
3

, S′v0
(Pn+1−k) = (n− k)2.

Therefore,

DR(Ln,k) = k3 − 1
3
(4n + 3)k2 + nk +

2
3
n3 − 1

3
n.

This completes the proof.
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Secondly, we give an order Ln,k with the maximum and the second maximum degree resistance

distance.

Theorem 3.2. Let G ∈ Ln,k, one has

(i) DR(G) 6 2n3

3
− 28n

3
+ 18, with the equality holds if and only if G ∼= Ln,3;

(ii) if G 6∼= Ln,3, then DR(G) 6 2n3

3
− 53n

3
+ 48, with the equality holds if and only if G ∼= Ln,4.

Proof. Let f(k) := DR(Ln,k) = k3 − 1
3
(4n + 3)k2 + nk +

2
3
n3 − 1

3
n, 4 6 k 6 n. In what follows,

we’ll discuss the monotonicity of f(k) on interval I := [3, 4, · · · , n]. The first derivative of f(k) is

∂f(k)
∂l

= 3k2 − 2
3
(4n + 3)k + n.

The roots of
∂f(k)

∂k
= 0 are k1,2 =

(4n + 3)∓√16n2 − 3n + 9
9

. It is easy to see that for n > 3,

k1 <
4n + 3− (4n− 24)

9
= 3, k2 >

4n + 3 + (24− 4n)
9

= 3.

It’s easy to verify that k2 < n. Then, one has

(i) when k ∈ [3, k2),
∂f(k)

∂k
< 0, which indicates that f(k) is decreasing on [3, k2);

(ii) when k ∈ [k2, n],
∂f(k)

∂k
> 0, which indicates that f(k) is increasing on [k2, n].

So, the maximum value of f(k) must occurred between f(3) and f(n). It’s suffice to see that f(3)−f(n) =
1
3
(n3−27n+54). If G 6∼= Ln,3, then the second maximum degree resistance distance of DR(G) is DR(Ln,4)

or DR(Ln,n). By Theorem 3.1, one has, DR(Ln,4) =
2
3
n3− 53

3
n+48, DR(Ln,n) =

1
3
n3− 1

3
n. Obviously,

DR(Ln,4) > DR(Ln,n).
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