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Abstract The numerical study on unsteady MHD flow in a porous medium through past a vertical

porous plate. The governing equation of flow field used by Crank-Nicolson finite difference method.
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Key Words MHD, porous medium, heat and mass transfer, Crank-Nicolsan method, thermal radiation

MSC 2010 76W05, 76R50

1 Introduction

The accelerated flow of a viscous incompressible fluid past an infinite vertical porous plate with

suction has many important technological applications in the astrophysical, geophysical and engineering

problems are in. heat losses from hot pipes, ovens etc surrounded by cooler air, are at least in part, due

to free convection.

The problem of heat transfer in a vertical channel has been studied in recent years as a model for the

re-entry problem to the significant role of thermal radiation in surface heat transfer when convection heat

transfer, Soundalgekar and Takhar (1981) studied radiation effects on free convection flow of a gas past

a semi-infinite flat plate. Hossain and Takhar (1996) studied the effect of radiation using the Rosseland

diffusion approximation on mixed convection along a vertical plate with uniform free stream velocity and

surface temperature.

Yamamoto et al. (1976) investigated the acceleration of convection in a porous permeable medium

along an arbitrary but smooth surface. Raptis (1983) studied free convection in a porous medium bounded

by an infinite plate. Sattar (1992) studied the same problem and obtained analytical solution by the

perturbation technique adopted by Singh and Dikshit (1988). Sattar et al. (2000) studied unsteady free

convection flow along a vertical porous plate embedded in a porous medium numerically the thermal

radiation interaction with convection in a boundary layer flow at a vertical plate with variable suction.

In the present paper we investigate the thermal radiation interaction on an absorbing emitting fluid

permitted by a transversely applied magnetic field past a moving vertical porous plate embedded in a

porous medium with time dependent suction and temperature.
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2 Mathematical Formulation

Let us consider the problem of an unsteady MHD free convection flow of a viscous, a vertical porous

flat plate under the influence of a uniform magnetic field. The flow is assumed to be in the x−direction,

which is taken along the plate in the upward direction and y−axis normal to the plate. Initially it is

assumed that the plate and the fluid are at a constant temperature T∞ at all points. At time t > 0

the plate is assumed to be moving in the upward direction with the velocity U(t) and there is a suction

velocity v0(t) taken to be a function of time, the temperature of the plate raised to T (t) where T (t) > T∞.

The plate is considered to be of infinite length, all derivatives with respect to x vanish and so the physical

variables are functions of y and t only.

The fluid is considered to be gray; absorbing-emitting radiation but non-scattering medium and the

Roseland approximation is used to describe the radioactive heat flux in the x−direction is considered

negligible in comparison to the y−direction.

Assuming that the Boussinesq and boundary-layer approximations hold and using the Darcy-Forchhemier

model, the governing equations for the problem are as follows: Continuity equation
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Equation of continuity for mass transfer:
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where (u, v) are the components of velocity along the x− and y− directions respectively, t is the time,

v is the kinematic viscosity, ρ is the density of the fluid, g0 is the acceleration due to gravity, β is the

coefficient of volume expansion, B0 is the magnetic induction, T and T∞ are the temperature of the fluid

within the boundary layer and in the free stream respectively, σ is the electric conductivity, α is the

thermal diffusivity and cp is the specific heat at constant pressure, k is the permeability of the porous

medium.

The corresponding boundary conditions for the above problem are given by
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− T∞

′ C′
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′
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by using Rosseland approximation qr takes the form
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(6)
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where σ1, the Stefan-Boltzamann constant and k1, the mean absorption coefficient. It is assumed that

the temperature differences within the flow are sufficiently small such that T4 may be expressed as a

linear function of temperature. This is accomplished by expanding T4 in a Taylor series about T∞ and

neglecting higher-order terms, thus
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′4 ∼= 4T

′3
∞
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− 3T

′4
∞

(7)

Using (5) and (6) in equation (3) we have

ρCp

(

∂T ′

∂t′
+ v′

∂

∂y′

)

= k
∂2T ′

∂y
′2

+
16σT

′3
∞

3k1

∂2T ′

∂y
′2

+
ρDmKT

cs

∂2C′

∂y
′2

+ µ

(

∂u′

∂y′

)2

(8)

In order to obtain a similarity solution in time of the problem, we introduce a similarity parameter δ as

δ = δ(t), such that δ is a length scale. then introduced as
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In terms of this length scale, a convenient solution of the equation (1) can be taken as v = v (t) = −
υ
δ
v0,

where v0 is the mass transfer parameter, which is +ve for suction and −ve for injection.

Following Sattar and Hossain (1992) U(t) and T (t) are now consider to have the following form:
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where n is a non-negative integer and U0, T0 are respectively the free stream velocity and mean temper-

ature. Here δ∗ = δ
δ0

, where δ0 is the value of δ at t = t0.

Now to make the equations (2) and (7) dimensionless, we introduce the following transformations:
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Using equations (8), (9), and (11) the equations (2) and (7) are become [using the analysis of Hashimoto

(1957), Sattar et al. (2000) and Sattar and Maleque (2000)]
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Re is the modified Forchhemier number,
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is the radiation number.
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3 Numerical Computation

The numerical solutions of the nonlinear differential Equations (12) − (13) under the boundary

conditions (14) have been implicit on crank Nicolson finite difference method is a second order .We have

chosen a step size of ∆η = 0.01 to satisfy the convergence criterion of 10−6 in all cases. The value of

η∞ was found to each iteration loop by η∞ = η∞ + ∆η. The maximum value of η∞ to each group of

parameters v0, M, n, Pr, Gr, Da, and Fs1 determined when the value of the unknown boundary conditions

at η = 0 not change to successful loop with error less than 10−6.

In order to verify the effects of the step size (∆η) we ran the code for our model with three different

step sizes as ∆η = 0.01, ∆η = 0.005, ∆η = 0.001 and in each case we found excellent agreement among

them.

4 Results and Discussion

For the purpose of discussing the results, the numerical calculations are presented in the form of

non-dimensional velocity and temperature profiles. Numerical computations have been carried out for

different values of the parameters entering into the problem. The values of Grashof number (Gr) are

taken to be large from the physical point of view. The large Grashof number values correspond to free

convection problem. The effects of suction parameter v0 on the velocity and temperature. that the

velocity decreases with the increase of suction for cooling of the plate and increases for the heating of the

plate. It is also clear that suction stabilizes the boundary layer growth.

Effects of Prandtl number (Pr) on the velocity as well as temperature profiles. decrease with the

increase of Pr whereas these profiles increase with the increase of Pr for a heating plate. For cooling

plate Pr has decreasing effect on the temperature profiles.

The effects of radiation parameter (N) on the velocity for both cooling and heating plates. This

figure shows that velocity decreases with the increase of the radiation parameter. This parameter has

reverse effects on the heating plate. of N on the temperature profiles. For large N , it is clear that

temperature decreases more rapidly with the increase of N . Therefore using radiation we can control the

flow characteristic and temperature distribution. The effect of magnetic field parameter on the velocity

It is observed from this figure that the magnetic field has decreasing effect on the velocity field for cooling

plate and increasing effect for heating plate. Magnetic field lines act as a string to retard the motion

of the fluid as consequence the rather heat transfer increases.the effect of non-negative integer n on

the velocity and temperature profiles. we see that velocity profiles decrease for the cooling plate while it

increases for the heating plate with the increase of n . Here n = 0 case represents the velocity as well as

temperature is time independent. The nonzero values of n represents the case of time dependent velocity

and temperature.

5 Conclusions

The thermal radiation interaction with unsteady MHD boundary layer flow past a continuously

moving vertical porous plate immersed in a porous medium. From the present study we can make the

following conclusions:

(i) The suction stabilizes the boundary layer growth.
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(ii) The velocity profiles increase whereas temperature profiles decrease with an increase of the free

convection currents.

(iii) Using magnetic filed we can control the flow characteristics and heat transfer.

(iv) Radiation has significant effects on the velocity as well as temperature distributions.

(v) Flow characteristics strongly depend on the nonnegative integer n.

(vi) Large Darcy number leads to the increase of the velocity profiles.

Figure 1. Temperature profiles for different values of suction parameter (v0)

Figure 2. Velocity profiles for different values of Prandtl number (Pr)
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