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1 Introduction

A group G is said to be a monolith if it contains only one minimal normal subgroup. We consider

the identity group as a monolith. A character χ of a group G is said to be a monolithic character if χ ∈

Irr(G) and the factor group G/ker(χ) is a monolith, where Irr(G) denotes the set of irreducible complex

characters of G.

J. Zhang, J. Shi and Z. Shen [8] investigated the finite groups in which every irreducible character

vanishes on at most three conjugacy classes of G. In this paper, we study the finite non-solvable groups

G in which every monolithic character vanishes on at most three conjugacy classes.

Remark and notation: Denote Irrm(G) the set of all monolithic characters of G, cdm(G) the set of

monolithic character degrees of G. Note that all irreducible characters of p-groups are monolithic, and

that cdm(G) = 1 if and only if G is abelian. Since
⋂

χ∈ Irrm(G) ker(χ) = 1 (see [1, Lemma 2(a)]), G is a

subgroup of a direct product of monoliths. Hence the set Irrm(G) is sufficiently large to have a strong

influence on the structure of G. On the other hand, in many cases, the set Irrm(G) is a rather small

subset of Irr(G) (see [1] for examples). Now our result can be stated as follows.

Theorem. Let G be a finite non-solvable group. If every monolithic character of G vanishes on at most

three conjugacy classes, then G ∼= A5, L2(7), or A6.
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In this paper, G always denotes a finite group, p always denotes a prime. Notation is standard and

taken from [4]. In particular, for χ ∈ Irr(G), set υ(χ) := {g ∈ G | χ(g) = 0}, denote cd(G) the set of

irreducible character degrees of G, and kG(N) the number of conjugacy classes of G contained in N ,

where N is a normal subset of G. For N � G, set Irr(G|N) = Irr(G) − Irr(G/N).

We shall freely use the following facts: Let N � G and write G = G/N .

(1) If N is contained in ker(χ) where χ ∈ Irr(G), then χ is monolithic as a character of G/N if and

only if it is monolithic as a character of G.

(2) For any x ∈ G, xG (when viewed as a subset of G, that is, the set
⋃

g∈G xgN) is a union of

conjugacy classes of G; furthermore, kG(xG) = 1 if and only if χ(x) = 0 for any χ ∈ Irr(G|N).

2 Proof of Theorem

The following result, which appears as Theorem 3.9 in [8], will turn out to be useful in proof of

Theorem.

Lemma 2.1. Let G be a non-abelian simple group. If every irreducible character vanish on at most

three conjugacy classes of G, then G is isomorphic to A5, L2(7), or A6.

We will use the following lemma (see [7, Theorem 2.1]).

Lemma 2.2. Let G be non-abelian, and let χ ∈ Irr1(G). Assume that N is a normal subgroup of G

such that G′ 6 N < G. If χN is not irreducible, then the following two statements hold:

(1) There exists a normal subgroup H of G such that N 6 H < G and G\H ⊆ υ(χ).

(2) If (G\G′) ∩ υ(χ) consists of n conjugacy classes of G, then [H : G′] ([G : H ] − 1) 6 n.

Next, we study the p-groups satisfying the hypothesis. Recall that all irreducible characters of p-

groups are monolithic. We get the following easy result.

Lemma 2.3. Suppose that G is a non-abelian p-group. If every monolithic character of G vanishes on

at most three conjugacy classes, then G ∼= D8 or Q8.

Proof. Take ϕ ∈ Irr1(G) such that ϕG′ is not irreducible. It follows from the hypothesis and Lemma

2.2 that G has a proper subgroup H such that G′ 6 H < G, G−H ⊆ υ(ϕ) and [H : G′] ([G : H ]−1) 6 3.

Since G is nilpotent, we easily conclude that G is a non-abelian p-group. It implies that |G/G′| > p2.

Note that [H : G′] ([G : H ] − 1) 6 3; then we obtain that p = 2 and |G/G′| = 4, and so G is of maximal

class (see [3, P.375]). Suppose that |G| > 16. As G is of maximal class, one of the upper central series

members must have index 16. Now every group of order 16 has a non-linear irreducible character which

vanishes on at least 4 conjugacy classes (see [5, P.300]). Hence |G| = 8, and thus G ∼= D8 or Q8. The

proof is complete. 2

Proof of Theorem. We need only prove necessity in the Theorem. Clearly our hypothesis is inherited

by any factor group. Let L be a normal subgroup of G maximal with respect to G/L being non-abelian.

Then (G/L)′ is the unique minimal normal subgroup of G/L, and thus all non-linear irreducible character

of G/L is monolithic.
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We claim that G ∼= A5, L2(7), or A6. By Lemma 2.1, it suffices to show that G is a non-abelian

simple group. Assume that G is a minimal counter-example.

Now we show that G/L is non-solvable. Otherwise, G/L is solvable. Then by [4, Corollary 12.3], we

have to discuss the following two cases.

Assume that G/L is a p-group, for some prime p. Then by Lemma 2.3, G/L ∼= D8 or Q8. Set

N/L = Z(G/L). Let λ be a non-principal character of N/L. Then λG = χ ∈ Irr1(G), and so χ vanishes

on G\N . Recall that all non-linear irreducible characters of G/L are monolithic. It follows from the

hypothesis that kG(G\N) = 3. Then it follows by [6, Theorem 3.5] that G has a normal subgroup E

such that G/E ∼= S5 or M10, then we obtain a contradiction from [2].

Assume that G/L is a Frobenius group with kernel N/L. Let λ be a non-principal character of N/L.

Then λG = χ ∈ Irr1(G), and so χ vanishes on G\N . It follows from the hypothesis that kG(G\N) 6 3.

If kG(G\N) = 1, then G is a Frobenius group with abelian kernel G′ and complement of order 2, a

contradiction. Suppose that kG(G\N) = 2. Then by [6, Theorem 2.2], we obtain that G is solvable, a

contradiction. If kG(G\N) = 3, then arguing as the above paragraph, we also obtain a contradiction.

Therefore G/L is non-solvable.

Next we show that L = 1. Assume that that L > 1. To reach a contradiction, we may assume

that L is a minimal normal subgroup of G. Recall that G/L is non-solvable, then by induction, G/L

is a non-abelian simple group. Applying Lemma 2.1, we obtain that G/L ∼= A5, L2(7), or A6. since
⋂

χ∈ Irrm(G) ker(χ) = 1, the set Irr(G|L) contain at least a non-linear monolithic character of G. Then

Arguing as in Theorem B of [8], we obtain a contradiction. Hence L = 1.

Since L = 1, all non-linear irreducible characters of G are monolithic. The hypothesis implies that

every irreducible character χ of G vanishes on at most three conjugacy classes of G. Hence, by [8,

Theorem B], we have G ∼= A5, L2(7), or A6. The proof is completed. �
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