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1 Introduction

The topological concept of connectedness is originated from C. Jordan’s Cours d’Analyse of 1893 [9].

The evolution of connectedness involves the contributions of Bolzano, Schoenflies, Cantor, W. H.Young,

G. C. Young, Hausdorff, Lennes and Riesz. Among these W. H.Young, G. C. Young gave a definition

of connectedness in terms of regions. Another remarkable contribution is by N.Lennes [10]. He defined

connectedness as “A set of points is connected if in every pair of complementary subsets at least one subset

contains a limit point of points in the other set”. When we go through the developments of the concept

of topological connectedness it can be realized that a systematic study on this concept was carried out

by Hausdorff, B. Knaster and K. Kuratowski [6].

The purpose of this paper is to explore the concepts of connectedness and to develop a new point

of view towards connectedness. The theory is still young and no doubt many concepts are yet to be

formulated. In this context the aim of this paper is to focuss on the study of the behaviour and structure

of the collection of connected sets in a generalized sense. The digital image processing mainly concerned

with defining neighbourhoods of node in the digital array. It can be noted that neighbourhoods of a node

in the digital array is defined using a topology on Z
2 or Z

n [8, 5]. But it is a fact that the topology

of Z
2 and Z

n is not a matter of this theory, but the collection of connected sets is the only concept

under consideration. This is the motivation for a detailed study of collection of connected sets on a set

considered as a structure on that set. Thus the theory of connectedness has wider scope of applicability

particularly in the fields of Digital topology, Image processing and Network theory [7, 4].
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2 Preliminaries

Let (X, τ) be any topological space. Then a subset A of X is said to be Connected in (X, τ) if

A cannot be written as the union of two non-empty separated subsets of X . ie A = A1 ∪ A2 with

A1 ∩ A2 = A2 ∩ A1 = ∅, then A1 = ∅ or A2 = ∅ (Where A1 and A2 denotes the closure of A1 and A2

respectively).

In [1] Susan J. Andima and W. J. Thron associated each topology T on a set X with a preorder

relation RT or ρ(T ), on X defined by (a, b) ∈ RT if and only if every open set containing b contains a. It

can be seen that, this correspondence is many-to-one and for a given preorder R on X , there is always a

least topology µ(R) called point closure topology of R and a greatest topology ν(R) called kernel topology

of R associated with R. From [1], a topology T on X has preorder R if and only if µ(R) ⊆ T ⊆ ν(R). In

particular, ρ(µ(R)) = ρ(ν(R)) = R.

Let G = (X, E) be a graph. Then G is said to be connected if, for every x, y ∈ X there is a path

from x to y. Now we can say that a subset U of X is Connected if the underlying vertex spanning

subgraph of G with respect to U is connected.

A C̆ech closure operator on a set X is a function V : P(X) −→ P(X) such that

1. V (φ) = φ,

2. A ⊆ V (A) for every A ∈ P(X),

3. V (A
⋃

B) = V (A)
⋃

V (B) for every A, B ∈ P(X)

where P(X) denotes the power set of X . For brevity we call V a closure operator on X and (X, V ) is

called a closure space.

In [1], P.T. Ramachandran [13] associated each closure operator V on a set X with a reflexive relation

ρV , on X defined by (a, b) ∈ ρV if and only if b ∈ V ({a}). It can be seen that, this correspondence is

many-to-one and for a given reflexive R on X , there is always a least closure operator µ(R) and a greatest

closure operator ν(R) associated with R. From [13], if R is a reflexive relation on a set X , then R = ρV

for some closure operator V on X if and only if µR 6 V 6 νR. In particular ρµR = ρνR = R.

Let (X, V ) be any closure space. Then a subset A of X is said to be Connected in (X, V ) if A

cannot be written as the union of two non-empty semi-separated subsets of (X, V ). That is A = A1∪A2

with V (A1) ∩ A2 = V (A2) ∩ A1 = ∅, then A1 = ∅ or A2 = ∅.

3 c-spaces and Connective Spaces

In this section we deal with c-space, connective space as in [11] and 2-generated space and give a

characterization about finite connective spaces.

Definition 3.1. [12], [11] Let X be a set, a c−structure in X is a collection C of subsets of X satisfying

the conditions

C1. ∀C ⊂ X, |C| 6 1 ⇒ C ∈ C

C2. Let {Ci}i∈I be a collection in C and ∩
i∈I

Ci 6= ∅, then ∪
i∈I

Ci ∈ C.

The set X together with a c-structure C on X is called a c-space and elements of C are called connected

sets in X with respect to C.
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Here onwards S denote the set of all singleton sets in the concerned space.

Example 3.2. 1. Let X = {1, 2, 3, 4, 5} and C = {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}} ∪ S. Then (X, C) is a

c-space

2. Let X be any infinite set and A, B subsets of X with |A| > 2, |B| > 2. Now C = ∅∪S ∪{A, B}∪{C ⊂

X : A ∪ B ⊂ C}. Then (X, C) is a c-space

Let X be any set, then

3. D = {∅} ∪ S is a c-structure on X and (X,D) is called discrete c-space.

4. I = P(X) is a c-structure on X and (X, I) is called indiscrete c-space.

5. C = D ∪ {A ⊆ X : A is infinite} is a c-structure on X and (X, C) is called co-finite c-space.

6. For A ⊆ X, CA = {B ⊆ X : A ⊆ B} ∪ D is a c-structure on X and (X, CA) is c-space.

Definition 3.3. Let (X, C) be a c-space and Y ⊂ X, we define CY = {C ∈ C : C ⊂ Y }, then (Y, CY ) is a

c-space and is called Sub c-space on Y .

Definition 3.4. Let X be a set and B ⊆ P(X), then the intersection of all c-structures on X containing

B is a c-structure and is called the c-structure generated by B and is denoted by 〈B〉.

Note that 〈B〉 is the smallest c-structure on X containing B

Definition 3.5. Let X be any set and α be any cardinal with α 6 |X |, then a c-structure C on X is said

to be α-generated if there is a sub collection B ⊆ {A ∈ C : |A| 6 α} such that C = 〈B〉. An element A in

a c-structure C on X is said to be α-generated if there is a sub collection B ⊆ {A ∈ C : |A| 6 α} such

that A ∈ 〈B〉.

It can be noted that the c-space given in Example 3.2, (3) and (4) are 2-generated but (5) is 2-

generated if and only if X is finite and (6) is 2-generated if and only if |X | = 2.

Proposition 3.6. Let A be any 2-generated connected set in a c-space (X, C) , then there exists an

a ∈ A such that A − {a} is a 2-generated element in C

Proof. Since A is 2-generated , then there is a sub collection B of 2- element sets in C such that A ∈ 〈B〉.

Without loss of generality we can assume that B is a minimal subfamily of 2-element sets in C such that

A ∈ 〈B〉. That is A = ∪
Ci∈B

Ci. Then there exist a ∈ A such that a ∈ Cj for only one Cj ∈ B. Let

Cj = {a, b}. Therefore (∪
Ci∈B,i6=j

Ci)∩Cj = {b}. Hence A−{a} = (∪
Ci∈B,i6=j

Ci) ∈ C and is 2-generated.

Definition 3.7. [12], [11] Let X be a set. A Connective Structure or Connectology on X is a

c-structure C on X satisfying the following conditions

C3 : Given any nonempty sets A, B ∈ C with A ∪ B ∈ C, then ∃ x ∈ A ∪ B such that {x} ∪ A ∈ C and

{x} ∪ B ∈ C

C4 : If A, B, Ci ∈ C (i ∈ I) are disjoint and A ∪ B ∪
⋃

i∈I Ci ∈ C, then ∃ J ⊆ I, A ∪
⋃

j∈J Cj ∈ C and

B ∪
⋃

i∈I−J Ci ∈ C.

The set X together with a connectology C on X is called a Connective space and elements of C are

called the Connected sets in X with respect to C.
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It can be noted that the c-space given in Example 3.2,(3), (4), (5)and (6) are connective spaces but

(1) and (2) are not.

Theorem 3.8. Finite connective spaces are precisely the finite 2- generated c-spaces.

Proof. We prove this by induction on the number of elements in the connected set C ∈ C. If |C| = 2, it

is clear that C is generated by a two element set in C. Suppose that |C| = 3, say C = {a1, a2, a3}. Take

A = {a1}, B = {a2} and D = {a3}. Then by condition C4 we get,

1. either {a1, a3} ∈ C or {a2, a3} ∈ C,

2. either {a1, a2} ∈ C or {a2, a3} ∈ C and

3. either {a1, a2} ∈ C or {a1, a3} ∈ C.

Then it follows that C is generated by two element sets in C. Suppose this result is true for any m <

n, (n > 3). Let C ∈ C with |C| = n say C = {a1, a2, · · · , an}, Take A ′ = {a1}, B ′ = {a2} and

Ci
′ = {ai+2}(i = 1, 2, · · · , n − 2). Since A ∪ B ∪

⋃n−2
i=1 Ci = C ∈ C. By condition C4 of Definition

3.7, there exist J ⊆ {1, 2, 3, · · · , n − 2} such that A ′ ∪ (∪
j∈J

Cj
′) ∈ C and B ′ ∪ (∪

j∈I−J
Cj

′). Let

D = A ′ ∪ (∪
j∈J

Cj
′) and E = B ′ ∪ (∪

j∈I−J
Cj

′) Then by induction hypothesis, D and E are 2-generated

elements in C. By condition C3 of Definition 3.7, there exists aj ∈ D ∪ E such that D ∪ {aj} ∈ C and

E ∪ {aj} ∈ C, with out loss of generality we may take aj ∈ D. If |E ∪ {aj}| < n, then E ∪ {aj} is

2-generated element in C. Thus there exists ak ∈ E such that {aj, ak} ∈ C. Now since D is 2-generated,

there exist an element ai ∈ A such that {ai, aj} ∈ C. Hence it is clear that C = D ∪ E is 2-generated.

If |E ∪ {aj}| = n, that is E ∪ {aj} = C. Now since E is 2-generated, there exist an element ak ∈ E

such that E − {ak} is a 2-generated element in C. Let A ′′ = {ak}, B ′′ = E − {ak} and C ′′ = {aj},

then {aj, ak} ∈ C or C − {ak} = B ′′ ∪ {aj} ∈ C. If {aj, ak} ∈ C and since E is 2-generated, it is clear

that C is 2-generated. If C − {ak} ∈ C, then by induction hypothesis it is 2-generated and hence by the

condition C3, there exist aj ∈ C such that {aj , ak} ∈ C. Therefore C is 2-generated. Conversely assume

that (X, C) is a 2-generated c-space.To show that C is a connectology on X . Let A, B ∈ C and A∪B ∈ C

If A∩B 6= ∅, take any x ∈ A∩B we get {x}∪A = A ∈ C and {x}∪B = B ∈ C If A∩B = ∅. Since A∪B

is 2-generated connected set, by Proposition 3.6 there is an a1 ∈ A ∪ B such that (A ∪ B) − {a1} ∈ C.

Again (A ∪ B) − {a1} is 2-generated, delete one more and repeat the process we reach a stage such that

(A ∪ B) − {a1, a2, · · · , ak} is 2-generated and

1. |A ∩ ((A ∪ B) − {a1, a2, · · · , ak})| = 1 or

2. |B ∩ ((A ∪ B) − {a1, a2, · · · , ak})| = 1

Without loss of generality, we assume (1) happens. Let aj be the element in A∩((A∪B)−{a1, a2, · · · , ak}),

since (A ∪ B) − {a1, a2, · · · , ak} is 2-generated , there exist ai ∈ B such that {aj, ai} ∈ C. Take aj = x,

therefore {x} ∪ A = A ∈ C and {x} ∪ B ∈ C. Hence C satisfies condition C3 of Definition 3.7. Now

let A, B, C ∈ C and are disjoint, A ∪ B ∪ C ∈ C. To show that A ∪ C ∈ C or B ∪ C ∈ C. Let

A =
⋃n

i=1 Ai, B =
⋃m

j=1 Bi and C =
⋃r

k=1 Ci, where {Ai, i = 1, 2, · · · , n}, {Bj , j = 1, 2, · · · , m} and

{Ck, i = 1, 2, · · · , r} are 2-element generating sets of A, B and C respectively. Now C ∪ (A∪B) ∈ C, then

there exists a ∈ C and b ∈ (A∪B) such that {a, b} ∈ C. If b ∈ A, then A∪C =
⋃n

i=1 Ai ∪
⋃r

k=1 Ci where

{Ai, i = 1, 2, · · · , n} ∪ {Bj, j = 1, 2, · · · , m} is a 2-element generating set of A ∪ B and hence A ∪ C ∈ C

If b ∈ B, as above argument we have B ∪ C ∈ C. Now we take A, B, C1, C2 ∈ C and are disjoint,
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A∪B ∪
⋃2

i=1 Ci ∈ C, then C2 ∪ (A∪B ∪C1) ∈ C, which implies there exists x ∈ C2 and y ∈ (A∪B ∪C1)

such that {x, y} ∈ C If y ∈ A, then A ∪ C2 ∈ C. By applying the proof in last paragraph to A ∪ C2, B

and C1, We get (A ∪C2 ∪C1 and B are connected) or (A ∪ C2 and B ∪ C1 are connected). Similarly we

can prove (B ∪ C2 ∪ C1 and A are connected) or (B ∪ C2 and A ∪ C1 are connected) if y ∈ B, If y ∈ C1,

the results follows by considering the sets C1 ∪ C2, A, B and apply the argument given for A, B, C in

previous paragraph. Then C satisfies condition C4 of Definition 3.7. Hence the result.

The example 3.2 (5) shows that there is an infinite non 2-generated connective space and example

3.2 (1) shows that a finite c-space need not be 2-generated.

Remark 3.9. It is clear that a finite 2-generated c-space (X, C) uniquely corresponds to a simple graph

G = (X, E), where E = {A : A ∈ C and |A| = 2}. Also note that the set of all subsets of X connected in

G is C. Thus from Theorem 3.8 finite connective spaces precisely simple graphs.

4 Topological c-spaces and Connective Spaces

Definition 4.1. A c-space (X, C) is said to be topological c-space if there exist a topology τ on X

such that the collection of all connected subsets of (X, τ) is C.

Example 4.2. 1. The indiscrete c-space (X, I) is a topological c-spaces, since the set of connected sets

of X with indiscrete topology is I = P(X).

2. The discrete c-space (X,D) is a topological c-spaces, since the set of connected sets of X with

discrete topology is D.

3. The Co-finite c-space (X, C) is topological, since the set of connected sets of X with Co-finite

topology is C.

4. Let X be any finite set with | X |> 3, consider a c-structure C = D ∪ {X} on X, then (X, C) is

a c-space. It is not topological since finite T1 spaces are discrete.

Theorem 4.3. A finite topological c-space is 2-generated

Proof. Let (X, C) be a finite topological c-space and B = {A ∈ C : |A| = 2}. Now we claim C = 〈B〉.

Suppose not, then 〈B〉 $ C, that is there exists C ∈ C such that C /∈ 〈B〉. Clearly |C| > 2, then there

exist at least two elements a, b ∈ C such that there is no 2-element sequence will connect them. Let

Ca be the set of all elements in C which are connected to a and Cb = C − Ca. Fix y ∈ Cb , then

for ∀x ∈ Ca, {x, y} /∈ 〈B〉 ( by definition of Ca and Cb). Now by definition of 〈B〉, {x, y} /∈ C. Since

(X, C) is topological, {x, y} is disconnected implies that there exists an open set Ox, y containing x which

does not contains y and Oy, x containing y which does not contains X . Define Uy = ∪x∈CaOx, y and

Vy = ∩x∈CaOy, x, then Ca ⊂ Uy and y ∈ Vy . But y /∈ Uy and Ca ∩Cb = ∅. Now take Va = ∪y∈Cb
Vy, then

Cb ⊂ Va and Ca ∩ Va = ∪y∈Cb
(Ca ∩ Vy) = ∅. Thus Va is an open set containing Cb which does not meets

Ca. Similarly there exists Ua containing Ca which does not meets Cb. Thus Ca and Cb are separated

in C and Ca ∪ Cb = C. Therefore C is disconnected, a contradiction. Hence C = 〈B〉. Thus any finite

topological c-space is 2-generated.

Remark 4.4. In general the converse of Theorem 4.3 is not true, it follows from Example 4.5. From

Example 4.2 (3) we can note that Theorem 4.3 is not true for infinite space.
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Example 4.5. Let X = {a, b, c, d, e, }, B = {{a, b}, {b, c}, {c, d}, {d, e}, {e, a}} and C = 〈B〉. Then (X, C)

is a 2-generated c-space.

suppose (X, C) is topological, then there exist a topology τ on X such that the collection of all

connected subsets of (X, C) is C.

Let R be the associated preorder of τ [1]. Since {a, b} ∈ C if and only if (a, b) ∈ R or (b, a) ∈ R.

Similarly {b, c} ∈ C if and only if (b, c) ∈ R or (c, b) ∈ R {c, d} ∈ C if and only if (c, d) ∈ R or (d, c) ∈ R

{d, e} ∈ C if and only if (d, e) ∈ R or (e, d) ∈ R {e, a} ∈ C if and only if (e, a) ∈ R or (a, e) ∈ R.

Case I: (a, b) ∈ R and {a, c} /∈ C implies (b, c) /∈ R [Since R is transitive]. Therefore (c, b) ∈

R. Continuing the above argument the collection {(a, b), (c, b), (c, d), (e, d), (e, a)} is subset of R and

R is transitive. Therefore (a, b) ∈ R and (e, a) ∈ R implies (e, b) ∈ R. Thus {e, b} is connected,

a contradiction. Case II: Starting from (b, a) ∈ R and proceed as in Case I, we get a collection

{(b, a), (b, c), (d, c), (d, e), (a, e)} subset of R and R is transitive. Then (b, a) ∈ R and (a, e) ∈ R im-

plies (b, e) ∈ R. Thus {b, e} is connected, a contradiction. Hence (X, C) is not a topological c-space, but

it is 2-generated.

Definition 4.6. Let R be a relation on X and (X, C) be a c-space, then R is said to be Compatible

with (X, C) if {x, y} ∈ C if and only if (x, y) ∈ R ∪ R−1

Theorem 4.7. A c-space (X, C) is topological if it is 2-generated and there is a compatible transitive

relation R on X.

Proof. Suppose that (X, C) is a 2-generated c-space with a compatible transitive relation R. Then {x} ∈ C

implies (x, x) ∈ R, thus R is a pre-order on X . Let τ be any topology on X such that µ(R) 6 τ 6 ν(R),

then ρ(τ) = R. Now let Cτ be the collection of all connected subsets of (X, τ). Suppose {x, y} ∈ Cτ if

and only if (x, y) ∈ R or (y, x) ∈ R if and only if (x, y) ∈ R ∪ R−1 if and only if {x, y} ∈ C. Therefore

Cτ = C, since C are 2-generated.Thus (X, C) is topological.

From Theorem 4.3 and 4.7, we have the following

Theorem 4.8. A finite c-space (X, C) is topological if and only if it is 2-generated and there is a com-

patible transitive relation R on X.

Theorem 4.9. A finite connective space (X, C) is topological if and only if there exists a compatible

transitive relation R on X.

Proof. It follows from Theorem 3.8 and 4.7.

5 Closure Operator

Definition 5.1. A c-space (X, C) is said to be induced by a closure operator V on X , if the collection

of all connected subsets of (X, V ) is C.

Theorem 5.2. A finite c-space is induced by a closure operator is 2-generated.

Proof. Let (X, C) be a finite c-space is induced by a closure operator V and B = {A ∈ C : |A| = 2}. Now

we claim C = 〈B〉. Suppose not , then 〈B〉 $ C, there exists C ∈ C such that C /∈ 〈B〉. Clearly |C| > 2,

then there exists at least two elements a, b ∈ C such that there is no 2-element sequence will connect
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them. Let Ca be the set of all elements in C which are connected to a and Cb = C−Ca. Fix y ∈ Cb , then

for ∀x ∈ Ca, {x, y} /∈ 〈B〉. Now by definition of 〈B〉, {x, y} /∈ C. Since the closure operator V induces the

c-space (X, C), {x, y} /∈ C implies that {x, y} is disconnected with respect to V and hence y /∈ V ({x})

and x /∈ V ({y}). Therefore y /∈ V ({x}), ∀x ∈ Ca. Thus y /∈ V (Ca) since V (Ca) =
⋃

x∈Ca
V ({x}). That

is y ∈ Cb implies that y /∈ V (Ca), and hence V (Ca) ∩ Cb = ∅. Similarly Ca ∩ V (Cb) = ∅. Thus Ca

and Cb are semi-separated in C and Ca ∪ Cb = C. Therefore C is disconnected, a contradiction to our

assumption. Hence C = 〈B〉. Thus any finite c-space is induced by a closure operator is 2-generated.

Theorem 5.3. Every finite 2-generated c-space is induced by a closure operator.

Proof. Suppose (X, C) is a finite 2-generated c-space. Now define a relation R on X by (x, y) ∈ R if and

only if {x, y} ∈ C. Clearly R is a reflexive relation on X . Consider any closure operator V on X such

that µ(R) 6 V 6 ν(R), then ρ(V ) = R (where ρ(V ) is the relation on X defined by (x, y) ∈ ρ(V ) if and

only if x ∈ V ({y}))[13]. Let CV be the c-structure with respect to V on X .Then {x, y} ∈ CV if and only

if (x, y) ∈ R or (y, x) ∈ R if and only if (x, y) ∈ R ∪ R−1 if and only if {x, y} ∈ C. Therefore CV = C,

since C are 2-generated. Thus (X, C) is induced by a closure operator.

6 Lattice Properties of c-spaces

The set of all c-structures on a set X is a partially ordered set under usual set inclusion. This poset

is denoted by LCS(X). Also note that the discrete c-structure D is the least element and the indiscrete

c-structure I is the greatest element in LCS(X).

Theorem 6.1. LCS(X) is a complete lattice.

Proof. Let {Ci : i ∈ I} be any subset of LCS(X) and let C = ∩Ci. Then C is a lower bound of

{Ci : i ∈ I} Now C ′ ∈ LCS(X) and C ′ ⊆ Ci for i ∈ I implies that C ′ ⊆ C. Thus C is the g.l.b of

{Ci : i ∈ I}. Thus any subset of LCS(X) has a meet. Hence LCS(X) is a complete lattice.

Remark 6.2. It can be note that LCS(X) is an atomic lattice, whose atoms are the c-structures of the

form {A}∪D where A ⊆ X, |A| > 2. If X is a finite set with n elements, then LCS(X) has 2n − (n+1)

atoms. And if X an infinite set, then LCS(X) has 2|X| atoms.

Theorem 6.3. The dual atoms in LCS(X) are of the form P(X) − {{a, b}}, a, b ∈ Xand a 6= b. If

|X | = n, then LCS(X) contains nC2 dual atoms.

Proof. Let C be any element in (LCS(X),⊆). If C contains all 2-element sets (ie.{{a, b}}), then C = P(X)

If C does not contains {a, b}, and {c, d} with {a, b} 6= {c, d} , then C′ =< C ∪ {a, b} > is an element in

LCS(X) such that C′ 6= P(X) and C ( C′ Therefore C is not a dual atom in LCS(X). Thus any dual

atom contains all but one 2- element set. Hence it is the form P(X)−{{a, b}}, a, b ∈ X and a 6= b.

Remark 6.4. If |X | > 2, then LCS(X) is non-modular and hence non-distributive.

Example 6.5. Let X = {a, b, c}, Consider C1 = {{a, b}}∪D, C2 = {{b, c}}∪D and C3 = {{a, b}, {a, b, c}}∪

D Note that C1 ⊆ C3 , C1 ∨ (C2 ∧ C3) = C1 and (C1 ∨ C2) ∧ C3) = C3 ∴ C1 ∨ (C2 ∧ C3) 6= (C1 ∨ C2) ∧ C3).

Hence LCS(X) is non- modular.
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Remark 6.6. Let X be any set with |X | > 3. Then LCS(X) is not dually atomic, since the meet of all

dual atoms in LSC(X) is the c-structure C = {A ⊆ X : |A| > 3} ∪ D; and there are c-structures which

are properly contained in C

Remark 6.7. For |X | > 2 the lattice LCS(X) is not complemented.

Example 6.8. Let X = {a, b, c, } and C1 = {{a, b}, {a, b, c}} ∪ D Suppose C1 is complemented, that

is there exists C2 such that C1 ∨ C2 = P(X). Then C2 ⊇ P(X) − {{a, b}} and hence C2 = P(X) or

C2 = P(X)− {{a, b}}. In either case C1 ∧ C2 ⊇ {{a, b, c}}∪D. Therefore C1 ∧ C2 6= D Hence LCS(X) is

not complemented

Theorem 6.9. Let X be any set. Then an atom C = {A} ∪ D of LCS(X) is topological if A ⊆ X and

|A| = 2.

Proof. If |A| = 2, consider the topology τ = {A, X} ∪ P(X − A) on X , then the connected sets of X

w.r.t. τ is C. Therefore C is topological.

Theorem 6.10. Let X be any finite set. Then an atom C = {A} ∪ D of LCS(X) is topological if and

only if |A| = 2

Proof. From Theorem 6.9 it is clear that if |A| = 2, then C is topological. Now suppose that |A| > 3. If

(X, C) is topological c-space, then there exists a topology τ on X such that the connected sets of X are

precisely C. Therefore any 2-elements set {a, b} of X is disconnected, then there exists an open set in X

which containing a, not contains b and vice-versa.That is (X, τ) is a finite T1 space. So it is a discrete

space. Therefore A is disconnected, a contradiction. Hence (X, C) is not topological.

Remark 6.11. Let X be any set with |X | > 5. Then the set of all topological c-structures on X is not

a sublattice of LCS(X).

Proof. Let {a, b, c, d, e} ⊆ X and C1 = 〈{{a, b}, {b, c}, {c, d}}〉 and C2 = 〈{{d, e}, {e, a}}〉. Then C1∨C2 =

〈{{a, b}, {b, c}, {c, d}, {d, e}, {e, a}}〉. Then by Example 4.5, C1 ∨ C2 is not topological.

Theorem 6.12. The dual atoms in LCS(X) are topological

Proof. Let us consider any dual atom C = P(X) − {{a, b}}, a, b ∈ X and a 6= b. Consider the topology

τ = {∅, X, {a}, {b}, {a, b}} on X , then the connected sets of X w.r.t. τ is C. Hence C is topological.

Remark 6.13. The collection of connectologies on a set X is a partially ordered set with usual inclusion

relation. This poset is denoted by CNS(X). But Example 6.14 shows that it is not a lattice

Example 6.14. Let X = R and let A = [−10,∞), B = (−∞, 10], C = [−10, 0), D = [0, 10], C′ = [−10, 0]

and D′ = [0, 10] ∪ {−1} are subset of X Define C1 = {A, B, C, A ∩ B} ∪ D, C2 = {A, B, D, A ∩ B} ∪ D,

C3 = {A, B, C, D, C′, A∩B}∪D, C4 = {A, B, C, D, D′, A∩B}∪D. It is clear that C1, C2, C3 and C4 are

connectologies on X and C1 ∪C2 = {A, B, C, D, A∩B}∪D. Also note that C ∪D = A∩B ∈ C1 ∪C2, but

no x ∈ C ∪ D such that C ∪ {x} and D ∪ {x} is in C1 ∪ C2. Therefore C1 ∪ C2 is not a Connectology on

X. Now C1 ∪C2 ( C3 and C1 ∪ C2 ( C4. Also there is no connectology C on X such that C1 ∪C2 ( C ( C3

or C1 ∪ C2 ( C ( C4. Thus C1 ∨ C2 does not exists in CNS(X).

Theorem 6.15. Let L2GCS(X) be the collection of all 2-generated c-structures on a set X. Then it is

a complete, atomic Boolean lattice with respect to inclusion relation.
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Proof. Clearly L2GCS(X) is a poset under set inclusion relation. Consider a subfamily {Ci : i ∈ I} of

L2GCS(X). Then for each i ∈ I, define Bi = {A ∈ Ci : |A| = 2} . then Ci = 〈Bi〉, for all i ∈ I. Define

C = 〈∪i∈IBi〉, then C ∈ G and Ci ⊆ C for each i ∈ I. Let us suppose that there exist C ′ ∈ G with

Ci ⊆ C ′, ∀i ∈ I and C ′  C. Then there exists {a, b} ∈ C such that {a, b} /∈ C ′. Now {a, b} ∈ C

implies there exists i ∈ I such that {a, b} ∈ Bi and hence there exists i ∈ I such that {a, b} ∈ Ci.

Therefore {a, b} /∈ C ′ implies Ci  C ′. It is a contradiction. Therefore C is the l.u.b of {Ci : i ∈ I},

ie L2GCS(X) is a partially ordered set with every subset has a join . Hence L2GCS(X) is a complete

lattice. The atoms of L2GCS(X) are precisely {Ca, b : a, b ∈ X} where Ca, b = {∅} ∪ S ∪ {{a, b}}. Thus

for any C ∈ G(X) it is clear that C = ∪
{a, b}∈C

Ca, b. Therefore L2GCS(X) is atomic. Also note that any

C ∈ G(X) has the complement C ′ given by C ′ = ∪
{a, b}/∈C

Ca, b. Therefore L2GCS(X) is complemented and

dually atomic. Also it is clear that L2GCS(X) is a distributive lattice. Thus L2GCS(X) is a Boolean

lattice.

Remark 6.16. From Theorem 6.15 and Theorem 3.8, it is clear that when X is finite, the family of

Connectologies on X is a complete lattice under usual inclusion relation.

The following Example 6.17 shows that the family of 2-generated c-spaces on a set X is not a

sublattice of the complete lattice LCS(X)

Example 6.17. Let X be any set with |X | > 3 and let {a, b, c} ⊆ X. Then P(X) − {a, b} and

P(X)−{b, c} are 2-generated c-spaces. Now the meet of P(X)−{a, b} and P(X)−{b, c} in LCS(X)

is P(X) − {{a, b}, {b, c}}. But it is not 2-generated since {a, b, c} is not a 2-generated set in P(X) −

{{a, b}, {b, c}}.
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