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1 Introduction

The notion of bitopological space (X, τ1, τ2), that is, a set X equipped with two arbitrary topologies

τ1, τ2 was first formulated by J.C Kelley. Kelley investigated non symmetric distance function, so called

quasi pseudometric on X ×X that generate two topologies on X that in general are independent of each

other. In this paper we discuss bitopological spaces associated with digraphs. For concepts in bitopology,

the references are [3] and [5].

2 Preliminaries

Let X be a nonempty set. Let p be a quasi pseudometric on X . Associated with p there is another

quasi pseudometric q such that q(x, y) = p(y, x). We say that p and q are conjugates. The collection

of all open p - balls forms a basis for a topology on X . Let this topology be denoted by τ1. Similarly

the collection of all open q - balls forms a basis for another topology on X , denoted by τ2. Thus we get

the bitopological space (X, τ1, τ2). A set X together with two (arbitrary) topologies τ1 and τ2 is called

a bitopological space and is denoted by (X, τ1, τ2). Throughout this paper X will denote a bitopological

space with topologies τ1 and τ2.

A subset A of a bitopological space (X, τ1, τ2) is (i, j)-dense subset in X if τicl(τjclA) = X , where

i, j = 1, 2. and (i, j)-nowhere dense subset(also called (i,j)- rare) if τjclA contains no non empty i-open

set. ie, if τiint(τjclA) = φ where (i, j = 1, 2).

Let (X, τ1, τ2) be a bitopological space. Then (X, τ1, τ2) is
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1. zero dimensional bitopological space if (X, τ1) has a basis whose elements are τ1 open and τ2 closed

and (X, τ2) has a basis whose elements are τ2 open and τ1 closed.

2. w−p−T0 (weakly pairwise T0)-space if for every pair of distinct points there exists a τ1 neighborhood

or τ2 neighborhood of one point not containing the other.

3. w − p− T1 (weakly pairwise T1)-space if for every pair of distinct points, at least one point has a τ1

neighborhood not containing the other while the second point has a τ2 neighborhood not containing

the first.

4. w − p − T2 (weakly pairwise T2-space) if for any pair of distinct points x, y there exists τ1 open set

U and τ2 open set V with U ∩ V = φ such that x ∈ U and y ∈ V or x ∈ V and y ∈ U .

5. p − T2 (pairwise Hausdorff ) if for each pair of distinct points x, y ∈ X there exists a τ1 open set U

and a τ2 open set V such that x ∈ U, y ∈ V and U ∩ V = φ.

6. p- normal (pairwise normal space) if for every pair of disjoint sets A and B in X where A is τ1 closed

and B is τ2 closed, there exist a τ2 open set U and a τ1 open set V such that A ⊆ U and B ⊆ V

and U ∩ V = φ.

7. pairwise perfectly normal space if it is pairwise normal and every τ1 closed set is a τ1 −Gδ and every

τ2 closed set is a τ2 − Gδ.

8. p-connected(pairwise connected space) if X cannot be expressed as a union of two disjoint sets A

and B such that A ∈ τ1 \ {φ} and B ∈ τ2 \ {φ}.

9. weakly totally disconnected space if for each pair of distinct points there exists a disconnection

X = A | B (ie, X = A ∪ B, where A ∈ τ1 \ {φ}, B ∈ τ2 \ {φ} and A ∩ B = φ) such that one point

belongs to A, the other to B, and the role of the points need not be interchangeable.

10. p-regular (pairwise regular space) if τ1 is regular with respect to τ2 and τ2 is regular with respect

to τ1. The topology τ1 of X is said to be regular with respect to τ2 if for each x ∈ X and each τ1

closed set F such that x /∈ F , there exist τ1 open set U and a τ2 open set V such that x ∈ U, F ⊆ V

and U ∩ V = φ.

11. pairwise completely regular space if τ1 is completely regular with respect to τ2 and τ2 is completely

regular with respect to τ1. τ1 is completely regular with respect to τ2 if for each τ1 closed set C and

each point x /∈ C, there is a real valued function f : X → [0, 1] such that f(x) = 0, f(C) = {1} and

f is τ1 upper semicontinuous and τ2 lower semicontinuous.

If (X, τ1, τ2), pairwise normal, then τ1 is completely regular with respect to τ2 if and only if τ2 is

completely regular with respect to τ1.

A directed graph or digraph D consists of a finite set V (D) of elements called vertices and a finite set

A(D) of ordered pairs of distinct vertices called arcs. We call V (D), the vertex set and A(D), the arc set

of D. We will often denote D = (V, A) which means that V and A are the vertex set and the arc set of D

respectively. A digraph is said to be symmetric digraph if (u, v) ∈ A(D) implies (v, u) ∈ A(D). A directed

walk or walk v0x1v1x2v2 . . . xnvn in a digraph is an alternating sequence of vertices and arcs in which

each arc xi is vi−1vi and is called a (v0, vn)- walk. A closed walk has the same first and last vertices. . A

path is a walk in which all the vertices are distinct. A trail is a walk in which all arcs are distinct. A cycle

is a nontrivial closed walk with all vertices except the first and last are distinct.. A closed trail is called a

circuit. A semiwalk is an alternating sequence of vertices and arcs v0x1v1x2v2 . . . xnvn in which each arc
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xi may be vi−1vi or vivi−1. A semiwalk is termed as a semipath if all the vertices are distinct. A vertex y

is reachable from x if and only if the digraph has an (x, y)-path and is denoted by A(x, y). A digraph is

said to be strongly connected or strong if every two points are mutually reachable . It is called unilaterally

connected or unilateral if for any two points at least one is reachable from the other. A digraph is weakly

connected or weak if every two points are joined by a semipath. A digraph is disconnected if it is not

even weakly connected. A point basis of a digraph D is a minimal collection of points from which all

points are reachable. A quasi pseudometric on a nonempty set X is a nonnegative real valued function

p on X × X such that

p(x, x) = 0, ∀ x ∈ X

and

p(x, z) 6 p(x, y) + p(y, z), ∀ x, y, z ∈ X

3 Main Results

3.1 Bitopological Spaces associated with digraphs

Let V be the vertex set of a digraph. The function p : V × V → R defined by

p(x, y) =







0 if x is reachable from y

1 otherwise

is a quasi pseudometric on V and therefore p induces a unique topology on V with {Bp(x, ǫ); x ∈ V, ǫ > 0}

as a basis. Let us denote this topology by τ1.

Let q : V × V → R be the function defined by

q(x, y) =







0 if y is reachable from x

1 otherwise

Then q is also a quasi pseudometric on V and p(x, y) = q(y, x). So p and q are conjugate to each

other. Also q induces a topology on V with {Bq(x, ǫ); x ∈ V, ǫ > 0} as a basis where

Bq(x, ǫ) = {y ∈ V : q(x, y) < ǫ} = {y ∈ V : A(x, y)}

. Let us denote this topology by τ2. The above two topologies τ1 and τ2 give the bitopological space

(V, τ1, τ2).
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In figure 6.1, τ1 = {{a, b}, {a, b, c}, {b}, {a, b, c, d}} and

τ2 = {{a, c, d}, {a, b, c, d}, {c, d}, {d}}.

Notation: Let D = (V, A) be a digraph. For x ∈ V , O1(x) and O2(x) denote the minimum neighborhoods

of x in τ1 and τ2 respectively and (V, τ1, τ2) is the bitopological space associated with D discussed above.

Then O1(x) = Bp(x, ǫ) and O2(x) = Bq(x, ǫ), where 0 < ǫ 6 1.

A subset A ⊆ V belongs to τ1 if and only if for every pair x, y with y ∈ A and x /∈ A, (x, y) /∈ A(D).

Similarly A ⊆ V belongs to τ2 if and only if for every pair x, y with x ∈ A, y /∈ A, (x, y) /∈ A(D). From

this it is clear that A ⊆ V belongs to τ1 if and only if V \ A belongs to τ2. Hence τ2 = coτ1.

Remark 1. If in-degree(x) = 0, then O1(x) = {x} and if out-degree(x) = 0, then O2(x) = {x}.

Remark 2. If the digraph D is symmetric then τ1 = τ2. If it is connected and symmetric then both

topologies are indiscrete topology. But if a symmetric digraph is not connected then both topologies are

neither discrete nor indiscrete, whereas if D is an empty graph then both coincide with the discrete topol-

ogy. For strongly connected digraphs both topologies coincide with the indiscrete topology. In particular

for cycles both the topologies are indiscrete.

Remark 3. If the digraph D is connected but not symmetric then no nonempty proper subset belong to

both τ1 and τ2.

In this paper we are interested in connected digraphs which are not symmetric, for which the study

of bitopology is important.

Theorem 1. Let D = (V, A) be a digraph. Then the topologies τ1 and τ2 are identical if and only if for

every a, b ∈ V such that A(a, b) holds, A(b, a) also hold.

Proof. Let τ1 = τ2. Let a, b ∈ V such that A(a, b) holds, so that a ∈ O1(b) and b ∈ O2(a). But since

τ1 = τ2, O1(a) = O2(a). Hence b ∈ O1(a) which implies that A(b, a) holds.

Conversely suppose the condition of the theorem holds. That is for every a, b ∈ V , with A(a, b)

holds, A(b, a) holds. To prove that τ1 = τ2 it is enough to prove that O1(a) = O2(a), ∀ a ∈ V. Suppose

O1(a) 6= O2(a), for some a ∈ V . Then there exists b ∈ O1(a) such that b /∈ O2(a) or vice versa. Suppose

that b ∈ O1(a) and b /∈ O2(a). Since b ∈ O1(a), A(b, a) holds. Therefore by the assumption A(a, b) holds,

which implies that b ∈ O2(a), a contradiction. A similar contradiction arises in the other case also.
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Theorem 2. The bitopological space (V, τ1, τ2) associated with the digraph D = (V, A) is zero dimensional.

Proof. We know {O1(x) : x ∈ V } forms a basis for (V, τ1). Since O1(x) belongs to τ1, V \ O1(x) belongs

to τ2. Hence O1(x) is τ2 closed. Hence (V, τ1) has a basis whose elements are τ1 open and τ2 closed.

Similarly {O2(x) : x ∈ V } is a basis for (V, τ2) whose elements are τ2 open and τ1 closed.

Note: Since every quasi pseudometrizable bitopological space is pairwise regular, pairwise normal,

and pairwise perfectly normal[3] and since the bitopological space (V, τ1, τ2) associated with the digraph

D = (V, A) is quasi pseudometrizable, it is pairwise regular, pairwise normal, and pairwise perfectly

normal. We can also prove that it is pairwise completely regular.

Theorem 3. The bitopological space (V, τ1, τ2) associated with the digraph D = (V, A) is pairwise com-

pletely regular.

Proof. Suppose a ∈ V and F is a closed set in V, with respect to τ1 such that a /∈ F . Then V \ F = U is

τ1 open and a ∈ U . Then the characteristic function of F, f = χF is τ1 upper semi continuous because,

for any real number b,

{x : f(x) < b} =



















φ ; b ∈ (−∞, 0]

U ; b ∈ (0, 1]

V ; b ∈ (1,∞)

Also f is τ2 lower semi continuous, because,

{x : f(x) > b} =



















V ; b ∈ (−∞, 0)

F ; b ∈ [0, 1)

φ ; b ∈ [1,∞)

Hence τ1 is completely regular with respect to τ2. Since (V, τ1, τ2) is pairwise normal, τ2 is completely

regular with respect to τ1. Hence (V, τ1, τ2) is pairwise completely regular.

3.2 Closure and Interior

Let D be a digraph and τ1, the topology induced by the quasi pseudometric p on V (D). If A ⊆ V (D)

we know that the closure, A of A with respect to τ1 is

A =
⋂

A⊆K

K,

where V (D) \ K ∈ τ1.

Since τ1 is induced by the quasi pseudo metric p, and for x ∈ V (D), dist(x, A) = inf{p(x, a) : a ∈ A}

we have,

A = {x ∈ V (D) : dist(x, A) = 0}

= {x ∈ V (D) : p(x, a) = 0 for at least one a ∈ A}

= the set of all points in V (D) which are reachable from A.
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Since points in A are reachable from A, A ⊆ A and we denote the closure of A with respect to τ1 by

τ1(clA)

We have the interior A◦ of A with respect to τ1 is A◦ =
⋃

O⊆A O, where O ∈ τ1. Since τ1 is induced

by the quasi pseudometric p,

A◦ = {x ∈ V (D) : dist(x, V (D) \ A) > 0}

= {x ∈ V (D) : p(x, a) > 0 for all a ∈ V (D) \ A}

= the set of all points in V (D) which are not reachable from V (D) \ A.

Since points in V (D) \ A are reachable from V (D) \ A, we have A◦ ⊆ A. We denote interior of A with

respect to τ1 by τ1(intA).

Similarly, τ2(clA) is the set of all points in V (D) which are reachable to A and τ2(intA) is the set of all

points in V (D) which are not reachable to V (D) \ A. Clearly τ2(intA) ⊆ A ⊆ τ2(clA).

Proposition 1. Let D be a digraph and τ1, the topology induced by the quasi pseudometric p. Let

A ⊆ V (D). Then A is dense in (V (D), τ1) if and only if given a ∈ V (D) \ A, there exists a path from

some point of A to a.

Proof. Suppose that A is dense in (V (D), τ1). Then τ1(clA) = V (D), so that every a ∈ V (D)\A belongs

to τ1(clA), which implies that there exists a path from some point of A to a.

Conversely suppose for every a ∈ V (D) \ A, ∃ a path from some point of A to a. So V (D) \ A ⊆

τ1(clA). Also A ⊆ τ1(clA). Hence V (D) ⊆ τ1(clA), which implies that V (D) = τ1(clA).

Since q(x, y) = p(y, x), analogues to the proposition 1 we have,

Corollary 1. Let D be a digraph and τ2, the topology induced by the quasi pseudometric q. Then

A ⊆ V (D) is dense in (V (D), τ2) if and only if given a ∈ V (D) \ A, there exists a path from a to some

point of A.

For the graph in Figure 2(a), {a} is a dense subset of the topological space (V (D), τ1) but has no

proper subset dense in (V (D), τ2). The graph in Figure 2(b) has no proper subset of V (D) which is dense

in (V (D), τ1) but the subset {a} is dense in (V (D), τ2).

Remark 4. If S is a point basis of the digraph D, τ1clS = V (D) and hence every point basis is dense

in (V (D), τ1).
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Definition 1. A subset A of a topological space X is nowhere dense if intcl(A) = φ.

Suppose A is nowhere dense in (V (D), τ1). Then τ1int(τ1clA) = φ, that is, τ1clA contains no

nonempty τ1 open set. Therefore, ∀a ∈ V (D),

O1(a) 6⊆ τ1clA, which implies that O1(a) ∩ (V (D) \ τ1clA) 6= φ.

Conversely suppose ∀a ∈ V (D), O1(a) ∩ (V (D) \ τ1clA) 6= φ. Therefore, O1(a) 6⊆ τ1clA, for any

a ∈ V (D). So τ1clA contains no nonempty τ1 open set, which implies that τ1int(τ1clA) = φ. Thus we

have, a set A ⊆ V (D) is nowhere dense in (V (D), τ1) if and only if for every a ∈ V (D),

O1(a) ∩ (V (D) \ τ1clA) 6= φ.

Analoguesly we have, a set A ⊆ V (D) is nowhere dense in (V (D), τ2) if and only if ∀a ∈ V (D), O2(a) ∩

(V (D) \ τ2clA) 6= φ.

Proposition 2. Let D = (V, A) be a connected digraph and U ⊆ V. Then U is nowhere dense in (V, τ1)

if every vertex in U has out-degree zero.

Proof. Let us suppose that every vertex in U has out-degree zero. Then τ1clU = U . Since D is connected,

∀a ∈ U, ∃ b 6= a such that b ∈ O(a). Since out- degree of b is nonzero, b /∈ U . In particular O(a) 6⊆ U for

any a ∈ U . Hence τ1int(τ1clU) = τ1intU = φ.

In Figure 3, {a, g} is nowhere dense in (V (D), τ1), by proposition 2.

But for every nowhere dense set in V (D), all the vertices need not have out-degree zero. For example,

the set {e, d} is also a nowhere dense subset with respect to τ1, even though out-degree of d is nonzero.

Analogues to proposition 2 we have:

Proposition 3. Let D = (V, A) be a connected digraph and U ⊆ V. Then U is nowhere dense in

(V (D), τ2) if every vertex of U has in-degree zero.

For example, in Figure 3, {b, c} is nowhere dense in (V (D), τ2), by proposition 3. Here also not all

nowhere dense subsets of V (D) with respect to τ2 are of the type stated in proposition 3. For example

the set {d, e} is nowhere dense in (V (D), τ2), but the in-degree of d is nonzero.

Proposition 4. Let D = (V, A) be a unilaterally connected digraph. Then any nonempty subset B of the

bitopological space (V, τ1, τ2) is (1, 2)- dense and (2, 1)- dense in V .
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Proof. Let y ∈ V \τ2cl(B). Since τ2cl(B) is τ2 closed, it is τ1 open. Therefore for every x ∈ τ2cl(B), (y, x) /∈

A(D), so that no point of τ2cl(B) is reachable from y. Hence A(y, x) does not hold for any x ∈ τ2cl(B).

But the digraph is unilateral. Hence A(x, y) must hold for every x ∈ τ2cl(B) and y ∈ τ1cl(τ2cl(B)),

which implies that V \ τ2cl(B) ⊆ τ1cl(τ2cl(B)). Hence τ1cl(τ2cl(B)) = V. Using similar arguments we

can prove that B is (2, 1)- dense in V.

Proposition 5. Let D = (V, A) be any digraph. A subset A of V (D) is (1, 2)- nowhere dense in V (D)

if and only if A = φ.

Proof. Since τ2clA is τ2 closed, it is τ1 open. Therefore,

τ1int(τ2clA) = τ2clA = φ,

which is possible if and only if A = φ.

Analogues to proposition 5 we have the following proposition.

Proposition 6. Let D = (V, A) be any digraph. A subset A of V (D) is (2, 1)- nowhere dense in V (D)

if and only if A = φ.

3.3 Separation Axioms in Bitopological Spaces

In this section we give the conditions under which the bitopological spaces associated with digraphs

satisfy different bitopological separation axioms. In [5] it is proved that the bitopological space (V, τ1, τ2)

associated with a digraph is w−p−T2 if and only if the digraph contains no circuit. We give an alternate

proof for this result.

Theorem 4. The bitopological space (V, τ1, τ2) associated with the digraph D = (V, A) is w − p − T2 if

and only if the digraph contains no circuit.

Proof. Let (V, τ1, τ2) is w − p − T2. So for x 6= y there exists τ1 open set U and τ2 open set W such

that U ∩ W = φ and either x ∈ U and y ∈ W or x ∈ W and y ∈ U. If possible let the graph contain a

circuit and let x and y be two distinct vertices on the circuit. Then every τ1 neighborhood of x and τ2

neighborhood of x contain y, which is a contradiction.

Conversely let the graph contain no circuit. Let x and y be two distinct points in V . It is enough

to prove that O1(x) ∩ O2(y) = φ or O1(y) ∩ O2(x) = φ.

Suppose O1(x) ∩ O2(y) 6= φ and O1(y) ∩ O2(x) 6= φ.

Let z ∈ O1(x) ∩ O2(y) and k ∈ O1(y) ∩ O2(x).

The point z ∈ O1(x) ∩ O2(y)

⇔ z ∈ O1(x) and z ∈ O2(y)

⇔ ∃ a path from z to x and a path from y to z

⇔ ∃ a path from y to x

The point k ∈ O1(y) ∩ O2(x)

⇔ k ∈ O1(y) and k ∈ O2(x)
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⇔ ∃ a path from k to y and a path from x to k

⇔ ∃ a path from x to y

Hence the graph contains a circuit, a contradiction.

Theorem 5. Let (V, τ1, τ2) be the bitopological space associated with the digraph D = (V, A). Then the

following statements are equivalent.

1. (V, τ1, τ2) is w − p − T2.

2. (V, τ1, τ2) is w − p − T1.

3. (V, τ1, τ2) is w − p − T0.

Proof. The implications of (1) to (2) and (2) to (3) are obvious. Now suppose that (V, τ1, τ2) is w−p−T0.

Then the digraph contains no circuit. For if the digraph contains a circuit C, then every τ1 neighborhood

and τ2 neighborhood of each point of C contains all other points of C, a contradiction. Hence (V, τ1, τ2)

is w − p − T2, by theorem 4.

Theorem 6. The bitopological space (V, τ1, τ2) associated with the digraph D = (V, A) is p − T2 if and

only if the graph is an empty graph with vertex set V .

Proof. Let (V, τ1, τ2) be p − T2. Suppose (x, y) ∈ A where x 6= y. Then every τ1 neighborhood of y will

contain x, a contradiction.

Converse part of the theorem holds trivially.

3.4 Relation between some bitopological, properties and graph theoretical, properties

In this section we analyze the relation between some bitopological properties and graph theoretical

properties.

Theorem 7. The bitopological space (V, τ1, τ2) associated with the digraph D = (V, A) is pairwise con-

nected if and only if the digraph is strongly connected.

Proof. Suppose that (V, τ1, τ2) is pairwise connected. Therefore V 6= A ∪ B whenever A ∩ B = φ and

either A ∈ τ1 \{φ} and B ∈ τ2 \{φ} or A ∈ τ2 \{φ} and B ∈ τ1 \{φ}. Suppose the digraph is not strongly

connected. Then there exists x, y ∈ V such that at least one of A(x, y) and A(y, x) does not hold.

If A(x, y) does not hold, there exists no path from x to y. Therefore x /∈ O1(y) and y /∈ O2(x).

Since x /∈ O1(y), O1(y) 6= V and V \ O1(y) 6= φ. Also V \ O1(y) ∈ τ2. Taking A = O1(y) ∈ τ1 \ {φ} and

B = V \ O1(y) ∈ τ2 \ {φ}, we get V = A ∪ B and A ∩ B = φ, a contradiction. A similar contradiction

arises when A(y, x) does not hold.

Conversely suppose the digraph D is strongly connected. In this case the topologies τ1 and τ2

coincide with the indiscrete topology of V and hence (V, τ1, τ2) is trivially pairwise connected.

Corollary 2. If (V, τ1, τ2) is pairwise connected then D is unilaterally connected and hence weakly con-

nected.
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Remark 5. The converse of corollary 2 need not be true. For example Figure 4(a) is unilaterally con-

nected. But its associated bitopological space (V, τ1, τ2) where V = {a, b, c, d, e} is not pairwise connected,

since, for A = {b, c, d, e} and B = {a}, V = A ∪ B, A ∈ τ1 \ {φ} and B ∈ τ2 \ {φ}.

Now Figure 4 (b) is weakly connected. But the associated bitopological space (V, τ1, τ2) where V =

{a, b, c, d, e, f, g} is not pairwise connected, since A = {a} ∈ τ1 \ {φ}, B = {b, c, d, e, f, g} ∈ τ2 \ {φ}

are such that V = A ∪ B and A ∩ B = φ

Definition 2. A digraph D is strictly unilaterally connected connected if

∀x, y ∈ V (D), exactly one of A(x, y) and A(y, x) holds.

Theorem 8. If the digraph D = (V, A) is strictly unilaterally connected then the bitopological space

(V, τ1, τ2) associated with the digraph is weakly totally disconnected.

Proof. Let the digraph be strictly unilaterally connected. Then for every x, y ∈ V , exactly one of A(x, y)

and A(y, x) holds.

If A(x, y) holds, then x ∈ O1(y) but x /∈ O2(y).

Take A = O2(y) ∈ τ2 and B = V \ O2(y) ∈ τ1. Since y ∈ O2(y) and x /∈ O2(y), O2(y) 6= φ and

X \ O2(y) 6= φ.

Therefore V = A ∪ B, A ∈ τ2 \ {φ}, B ∈ τ1 \ {φ}, A ∩ B = φ, x ∈ B and y ∈ A. Hence(V, τ1, τ2) is

weakly totally disconnected.

If A(y, x) holds, a similar proof can be given.

Definition 3. A bitopological space (X, τ1, τ2) is strictly totally disconnected if given x, y ∈ X, x 6= y,

exactly one of the following holds.

1. There exist a pair A, B of disjoint subsets of X such that

X = A ∪ B, A ∈ τ1 \ {φ}, B ∈ τ2 \ {φ}, x ∈ A and y ∈ B.

2. There exist a pair C, D of disjoint subsets of X such that

X = C ∪ D, C ∈ τ2 \ {φ}, D ∈ τ1 \ {φ}, x ∈ C and y ∈ D.

Theorem 9. The bitopological space (V, τ1, τ2) associated with the digraph D = (V, A) is strictly totally

disconnected if and only if the digraph is strictly unilaterally connected.
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Proof. Let (V, τ1, τ2) be strictly totally disconnected. Suppose the digraph is not strictly unilaterally

connected. Then there exists x, y ∈ V such that, one of the following happens.

1. Both A(x, y) and A(y, x) hold.

2. Neither A(x, y) nor A(y, x) hold.

Case1 In this case we suppose that A(x, y) and A(y, x) hold for some x and y in X . So every τ1

neighborhood of x contains y and every τ2 neighborhood of y contains x. Also every τ1 neighborhood of

y contains x and every τ2 neighborhood of x contains y. Therefore for this pair x, y there does not exist

a separation, which is a contradiction.

Case2 Neither A(x, y) nor A(y, x) holds. In this case there exists no path from x to y and from y to x.

Thus x /∈ O1(y) and y /∈ O2(x).

Similarly y /∈ O1(x) and x /∈ O2(y).

Let A = O1(y) ∈ τ1 \ {φ} and B = X \ O1(y) ∈ τ2 \ {φ}.

Then X = A ∪ B, A ∩ B = φ, y ∈ A, x ∈ B .

Take C = O2(y) and D = X \O2(y). Then X = C∪D, C∩D = φ, y ∈ C ∈ τ2\{φ} and x ∈ D ∈ τ1\{φ},

a contradiction.

Conversely let the digraph be strictly unilaterally connected. Then for every x, y in V, exactly

one of A(x, y) and A(y, x) holds. Without loss of generality assume that A(x, y) holds. Then every τ1

neighborhood of y contains x, but x /∈ O2(y). Take A = O2(y) and B = X \ O2(y).

Then V = A ∪ B where A ∈ τ2 \ {φ}, B ∈ τ1 \ {φ}, A ∩ B = φ, y ∈ A and x ∈ B. As A(x, y) holds,

x belongs to every τ1 neighborhood of y. Hence we cannot find a τ1 neighborhood of y not containing x

and a τ2 neighborhood of x not containing y. Hence (V, τ1, τ2) is strictly totally disconnected.
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