www.sajm-online.com ISSN 2251-1512

Bitopological spaces associated with digraphs

Baby Girija E.V.^{®*}, Raji Pilakkat[®]

① Department of Mathematics, University of Calicut, India E-mail: babygirijaev@yahoo.co.in

Received: 12-1-2012; Accepted: 1-25-2013 *Corresponding author

Abstract In this paper we deal with bitopological spaces associated with digraphs.

Key Words digraph, quasi-pseudometric, bitopological spacesMSC 2010 05C10, 54A05

1 Introduction

The notion of bitopological space (X, τ_1, τ_2) , that is, a set X equipped with two arbitrary topologies τ_1, τ_2 was first formulated by J.C Kelley. Kelley investigated non symmetric distance function, so called quasi pseudometric on $X \times X$ that generate two topologies on X that in general are independent of each other. In this paper we discuss bitopological spaces associated with digraphs. For concepts in bitopology, the references are [3] and [5].

2 Preliminaries

Let X be a nonempty set. Let p be a quasi pseudometric on X. Associated with p there is another quasi pseudometric q such that q(x,y) = p(y,x). We say that p and q are conjugates. The collection of all open p - balls forms a basis for a topology on X. Let this topology be denoted by τ_1 . Similarly the collection of all open q - balls forms a basis for another topology on X, denoted by τ_2 . Thus we get the bitopological space (X, τ_1, τ_2) . A set X together with two (arbitrary) topologies τ_1 and τ_2 is called a *bitopological space* and is denoted by (X, τ_1, τ_2) . Throughout this paper X will denote a bitopological space with topologies τ_1 and τ_2 .

A subset A of a bitopological space (X, τ_1, τ_2) is (i, j)-dense subset in X if $\tau_i cl(\tau_j clA) = X$, where i, j = 1, 2. and (i, j)-nowhere dense subset(also called (i,j)- rare) if $\tau_j clA$ contains no non empty *i*-open set. ie, if $\tau_i int(\tau_j clA) = \phi$ where (i, j = 1, 2).

Let (X, τ_1, τ_2) be a bitopological space. Then (X, τ_1, τ_2) is

Citation: Baby Girija E.V., R. Pilakkat, Bitopological spaces associated with digraphs, South Asian J Math, 2013, 3(1), 56-66.

- 1. zero dimensional bitopological space if (X, τ_1) has a basis whose elements are τ_1 open and τ_2 closed and (X, τ_2) has a basis whose elements are τ_2 open and τ_1 closed.
- 2. $w-p-T_0$ (weakly pairwise T_0)-space if for every pair of distinct points there exists a τ_1 neighborhood or τ_2 neighborhood of one point not containing the other.
- 3. $w p T_1$ (weakly pairwise T_1)-space if for every pair of distinct points, at least one point has a τ_1 neighborhood not containing the other while the second point has a τ_2 neighborhood not containing the first.
- 4. $w p T_2$ (weakly pairwise T_2 -space) if for any pair of distinct points x, y there exists τ_1 open set U and τ_2 open set V with $U \cap V = \phi$ such that $x \in U$ and $y \in V$ or $x \in V$ and $y \in U$.
- 5. $p T_2$ (pairwise Hausdorff) if for each pair of distinct points $x, y \in X$ there exists a τ_1 open set U and a τ_2 open set V such that $x \in U, y \in V$ and $U \cap V = \phi$.
- 6. *p*-normal (*pairwise normal space*) if for every pair of disjoint sets A and B in X where A is τ_1 closed and B is τ_2 closed, there exist a τ_2 open set U and a τ_1 open set V such that $A \subseteq U$ and $B \subseteq V$ and $U \cap V = \phi$.
- 7. pairwise perfectly normal space if it is pairwise normal and every τ_1 closed set is a $\tau_1 G_{\delta}$ and every τ_2 closed set is a $\tau_2 G_{\delta}$.
- 8. *p*-connected(*pairwise connected space*) if X cannot be expressed as a union of two disjoint sets A and B such that $A \in \tau_1 \setminus \{\phi\}$ and $B \in \tau_2 \setminus \{\phi\}$.
- 9. weakly totally disconnected space if for each pair of distinct points there exists a disconnection $X = A \mid B \ (ie, X = A \cup B)$, where $A \in \tau_1 \setminus \{\phi\}$, $B \in \tau_2 \setminus \{\phi\}$ and $A \cap B = \phi$) such that one point belongs to A, the other to B, and the role of the points need not be interchangeable.
- 10. *p*-regular (*pairwise regular space*) if τ_1 is regular with respect to τ_2 and τ_2 is regular with respect to τ_1 . The topology τ_1 of X is said to be regular with respect to τ_2 if for each $x \in X$ and each τ_1 closed set F such that $x \notin F$, there exist τ_1 open set U and a τ_2 open set V such that $x \in U, F \subseteq V$ and $U \cap V = \phi$.
- 11. pairwise completely regular space if τ_1 is completely regular with respect to τ_2 and τ_2 is completely regular with respect to τ_1 . τ_1 is completely regular with respect to τ_2 if for each τ_1 closed set C and each point $x \notin C$, there is a real valued function $f: X \to [0, 1]$ such that $f(x) = 0, f(C) = \{1\}$ and f is τ_1 upper semicontinuous and τ_2 lower semicontinuous.

If (X, τ_1, τ_2) , pairwise normal, then τ_1 is completely regular with respect to τ_2 if and only if τ_2 is completely regular with respect to τ_1 .

A directed graph or digraph D consists of a finite set V(D) of elements called vertices and a finite set A(D) of ordered pairs of distinct vertices called arcs. We call V(D), the vertex set and A(D), the arc set of D. We will often denote D = (V, A) which means that V and A are the vertex set and the arc set of D respectively. A digraph is said to be symmetric digraph if $(u, v) \in A(D)$ implies $(v, u) \in A(D)$. A directed walk or walk $v_0x_1v_1x_2v_2\ldots x_nv_n$ in a digraph is an alternating sequence of vertices and arcs in which each arc x_i is $v_{i-1}v_i$ and is called a (v_0, v_n) - walk. A closed walk has the same first and last vertices. A path is a walk in which all the vertices are distinct. A trail is a walk in which all arcs are distinct. A cycle is a nontrivial closed walk with all vertices except the first and last are distinct. A closed trail is called a circuit. A semiwalk is an alternating sequence of vertices and arcs $v_0x_1v_1x_2v_2\ldots x_nv_n$ in which each arc

 x_i may be $v_{i-1}v_i$ or v_iv_{i-1} . A semiwalk is termed as a *semipath* if all the vertices are distinct. A vertex y is reachable from x if and only if the digraph has an (x, y)-path and is denoted by A(x, y). A digraph is said to be *strongly connected* or *strong* if every two points are mutually reachable. It is called *unilaterally connected* or *unilateral* if for any two points at least one is reachable from the other. A digraph is *weakly connected* or *weak* if every two points are joined by a semipath. A digraph is *disconnected* if it is not even weakly connected. A *point basis* of a digraph D is a minimal collection of points from which all points are reachable. A *quasi pseudometric* on a nonempty set X is a nonnegative real valued function p on $X \times X$ such that

$$p(x,x) = 0, \ \forall \ x \in X$$

and

$$p(x,z) \leqslant p(x,y) + p(y,z), \ \forall \ x,y,z \in X$$

3 Main Results

3.1 Bitopological Spaces associated with digraphs

Let V be the vertex set of a digraph. The function $p: V \times V \to R$ defined by

$$p(x,y) = \begin{cases} 0 & \text{if } x \text{ is reachable from } y \\ 1 & \text{otherwise} \end{cases}$$

is a quasi pseudometric on V and therefore p induces a unique topology on V with $\{B_p(x, \epsilon); x \in V, \epsilon > 0\}$ as a basis. Let us denote this topology by τ_1 .

Let $q: V \times V \to R$ be the function defined by

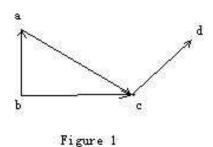
$$q(x,y) = \begin{cases} 0 & \text{if } y \text{ is reachable from } x \\ 1 & \text{otherwise} \end{cases}$$

Then q is also a quasi pseudometric on V and p(x, y) = q(y, x). So p and q are conjugate to each other. Also q induces a topology on V with $\{B_q(x, \epsilon); x \in V, \epsilon > 0\}$ as a basis where

$$B_q(x,\epsilon) = \{y \in V: q(x,y) < \epsilon\} = \{y \in V: A(x,y)\}$$

. Let us denote this topology by τ_2 . The above two topologies τ_1 and τ_2 give the bitopological space (V, τ_1, τ_2) .

58



In figure 6.1, $\tau_1 = \{\{a, b\}, \{a, b, c\}, \{b\}, \{a, b, c, d\}\}$ and $\tau_2 = \{\{a, c, d\}, \{a, b, c, d\}, \{c, d\}, \{d\}\}.$

Notation: Let D = (V, A) be a digraph. For $x \in V$, $O_1(x)$ and $O_2(x)$ denote the minimum neighborhoods of x in τ_1 and τ_2 respectively and (V, τ_1, τ_2) is the bitopological space associated with D discussed above. Then $O_1(x) = B_p(x, \epsilon)$ and $O_2(x) = B_q(x, \epsilon)$, where $0 < \epsilon \leq 1$.

A subset $A \subseteq V$ belongs to τ_1 if and only if for every pair x, y with $y \in A$ and $x \notin A$, $(x, y) \notin A(D)$. Similarly $A \subseteq V$ belongs to τ_2 if and only if for every pair x, y with $x \in A, y \notin A, (x, y) \notin A(D)$. From this it is clear that $A \subseteq V$ belongs to τ_1 if and only if $V \setminus A$ belongs to τ_2 . Hence $\tau_2 = co\tau_1$.

Remark 1. If in-degree(x) = 0, then $O_1(x) = \{x\}$ and if out-degree(x) = 0, then $O_2(x) = \{x\}$.

Remark 2. If the digraph D is symmetric then $\tau_1 = \tau_2$. If it is connected and symmetric then both topologies are indiscrete topology. But if a symmetric digraph is not connected then both topologies are neither discrete nor indiscrete, whereas if D is an empty graph then both coincide with the discrete topology. For strongly connected digraphs both topologies coincide with the indiscrete topology. In particular for cycles both the topologies are indiscrete.

Remark 3. If the digraph D is connected but not symmetric then no nonempty proper subset belong to both τ_1 and τ_2 .

In this paper we are interested in connected digraphs which are not symmetric, for which the study of bitopology is important.

Theorem 1. Let D = (V, A) be a digraph. Then the topologies τ_1 and τ_2 are identical if and only if for every $a, b \in V$ such that A(a, b) holds, A(b, a) also hold.

Proof. Let $\tau_1 = \tau_2$. Let $a, b \in V$ such that A(a, b) holds, so that $a \in O_1(b)$ and $b \in O_2(a)$. But since $\tau_1 = \tau_2$, $O_1(a) = O_2(a)$. Hence $b \in O_1(a)$ which implies that A(b, a) holds.

Conversely suppose the condition of the theorem holds. That is for every $a, b \in V$, with A(a, b) holds, A(b, a) holds. To prove that $\tau_1 = \tau_2$ it is enough to prove that $O_1(a) = O_2(a)$, $\forall a \in V$. Suppose $O_1(a) \neq O_2(a)$, for some $a \in V$. Then there exists $b \in O_1(a)$ such that $b \notin O_2(a)$ or vice versa. Suppose that $b \in O_1(a)$ and $b \notin O_2(a)$. Since $b \in O_1(a)$, A(b, a) holds. Therefore by the assumption A(a, b) holds, which implies that $b \in O_2(a)$, a contradiction. A similar contradiction arises in the other case also. \Box

Theorem 2. The bitopological space (V, τ_1, τ_2) associated with the digraph D = (V, A) is zero dimensional.

Proof. We know $\{O_1(x) : x \in V\}$ forms a basis for (V, τ_1) . Since $O_1(x)$ belongs to $\tau_1, V \setminus O_1(x)$ belongs to τ_2 . Hence $O_1(x)$ is τ_2 closed. Hence (V, τ_1) has a basis whose elements are τ_1 open and τ_2 closed. Similarly $\{O_2(x) : x \in V\}$ is a basis for (V, τ_2) whose elements are τ_2 open and τ_1 closed.

Note: Since every quasi pseudometrizable bitopological space is pairwise regular, pairwise normal, and pairwise perfectly normal[3] and since the bitopological space (V, τ_1, τ_2) associated with the digraph D = (V, A) is quasi pseudometrizable, it is pairwise regular, pairwise normal, and pairwise perfectly normal. We can also prove that it is pairwise completely regular.

Theorem 3. The bitopological space (V, τ_1, τ_2) associated with the digraph D = (V, A) is pairwise completely regular.

Proof. Suppose $a \in V$ and F is a closed set in V, with respect to τ_1 such that $a \notin F$. Then $V \setminus F = U$ is τ_1 open and $a \in U$. Then the characteristic function of F, $f = \chi_F$ is τ_1 upper semi continuous because, for any real number b,

$$\{x : f(x) < b\} = \begin{cases} \phi & ; b \in (-\infty, 0] \\ U & ; b \in (0, 1] \\ V & ; b \in (1, \infty) \end{cases}$$

Also f is τ_2 lower semi continuous, because,

$$\{x: f(x) > b\} = \begin{cases} V & ; b \in (-\infty, 0) \\ F & ; b \in [0, 1) \\ \phi & ; b \in [1, \infty) \end{cases}$$

Hence τ_1 is completely regular with respect to τ_2 . Since (V, τ_1, τ_2) is pairwise normal, τ_2 is completely regular with respect to τ_1 . Hence (V, τ_1, τ_2) is pairwise completely regular.

3.2 Closure and Interior

Let D be a digraph and τ_1 , the topology induced by the quasi pseudometric p on V(D). If $A \subseteq V(D)$ we know that the closure, \overline{A} of A with respect to τ_1 is

$$\overline{A} = \bigcap_{A \subseteq K} K,$$

where $V(D) \setminus K \in \tau_1$.

Since τ_1 is induced by the quasi pseudo metric p, and for $x \in V(D)$, $dist(x, A) = inf\{p(x, a) : a \in A\}$ we have,

$$\overline{A} = \{x \in V(D) : dist(x, A) = 0\}$$
$$= \{x \in V(D) : p(x, a) = 0 \text{ for at least one } a \in A\}$$
$$= \text{the set of all points in } V(D) \text{ which are reachable from } A.$$

60

Since points in A are reachable from A, $A \subseteq \overline{A}$ and we denote the closure of A with respect to τ_1 by $\tau_1(clA)$

We have the interior A° of A with respect to τ_1 is $A^{\circ} = \bigcup_{O \subseteq A} O$, where $O \in \tau_1$. Since τ_1 is induced by the quasi pseudometric p,

$$A^{\circ} = \{x \in V(D) : dist(x, V(D) \setminus A) > 0\}$$
$$= \{x \in V(D) : p(x, a) > 0 \text{ for all } a \in V(D) \setminus A\}$$

= the set of all points in V(D) which are not reachable from $V(D) \setminus A$.

Since points in $V(D) \setminus A$ are reachable from $V(D) \setminus A$, we have $A^{\circ} \subseteq A$. We denote interior of A with respect to τ_1 by $\tau_1(intA)$.

Similarly, $\tau_2(clA)$ is the set of all points in V(D) which are reachable to A and $\tau_2(intA)$ is the set of all points in V(D) which are not reachable to $V(D) \setminus A$. Clearly $\tau_2(intA) \subseteq A \subseteq \tau_2(clA)$.

Proposition 1. Let D be a digraph and τ_1 , the topology induced by the quasi pseudometric p. Let $A \subseteq V(D)$. Then A is dense in $(V(D), \tau_1)$ if and only if given $a \in V(D) \setminus A$, there exists a path from some point of A to a.

Proof. Suppose that A is dense in $(V(D), \tau_1)$. Then $\tau_1(clA) = V(D)$, so that every $a \in V(D) \setminus A$ belongs to $\tau_1(clA)$, which implies that there exists a path from some point of A to a.

Conversely suppose for every $a \in V(D) \setminus A$, \exists a path from some point of A to a. So $V(D) \setminus A \subseteq \tau_1(clA)$. Also $A \subseteq \tau_1(clA)$. Hence $V(D) \subseteq \tau_1(clA)$, which implies that $V(D) = \tau_1(clA)$.

Since q(x, y) = p(y, x), analogues to the proposition 1 we have,

Corollary 1. Let D be a digraph and τ_2 , the topology induced by the quasi pseudometric q. Then $A \subseteq V(D)$ is dense in $(V(D), \tau_2)$ if and only if given $a \in V(D) \setminus A$, there exists a path from a to some point of A.

For the graph in Figure 2(a), $\{a\}$ is a dense subset of the topological space $(V(D), \tau_1)$ but has no proper subset dense in $(V(D), \tau_2)$. The graph in Figure 2(b) has no proper subset of V(D) which is dense in $(V(D), \tau_1)$ but the subset $\{a\}$ is dense in $(V(D), \tau_2)$.

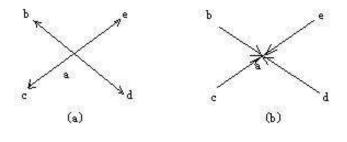


Figure 2

Remark 4. If S is a point basis of the digraph D, $\tau_1 clS = V(D)$ and hence every point basis is dense in $(V(D), \tau_1)$.

Definition 1. A subset A of a topological space X is nowhere dense if $intcl(A) = \phi$.

Suppose A is nowhere dense in $(V(D), \tau_1)$. Then $\tau_1 int(\tau_1 clA) = \phi$, that is, $\tau_1 clA$ contains no nonempty τ_1 open set. Therefore, $\forall a \in V(D)$,

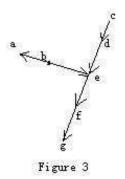
 $O_1(a) \not\subseteq \tau_1 clA$, which implies that $O_1(a) \cap (V(D) \setminus \tau_1 clA) \neq \phi$.

Conversely suppose $\forall a \in V(D)$, $O_1(a) \cap (V(D) \setminus \tau_1 clA) \neq \phi$. Therefore, $O_1(a) \not\subseteq \tau_1 clA$, for any $a \in V(D)$. So $\tau_1 clA$ contains no nonempty τ_1 open set, which implies that $\tau_1 int(\tau_1 clA) = \phi$. Thus we have, a set $A \subseteq V(D)$ is nowhere dense in $(V(D), \tau_1)$ if and only if for every $a \in V(D)$, $O_1(a) \cap (V(D) \setminus \tau_1 clA) \neq \phi$.

Analoguesly we have, a set $A \subseteq V(D)$ is nowhere dense in $(V(D), \tau_2)$ if and only if $\forall a \in V(D), O_2(a) \cap (V(D) \setminus \tau_2 clA) \neq \phi$.

Proposition 2. Let D = (V, A) be a connected digraph and $U \subseteq V$. Then U is nowhere dense in (V, τ_1) if every vertex in U has out-degree zero.

Proof. Let us suppose that every vertex in U has out-degree zero. Then $\tau_1 clU = U$. Since D is connected, $\forall a \in U, \exists b \neq a \text{ such that } b \in O(a)$. Since out- degree of b is nonzero, $b \notin U$. In particular $O(a) \not\subseteq U$ for any $a \in U$. Hence $\tau_1 int(\tau_1 clU) = \tau_1 intU = \phi$.



In Figure 3, $\{a, g\}$ is nowhere dense in $(V(D), \tau_1)$, by proposition 2.

But for every nowhere dense set in V(D), all the vertices need not have out-degree zero. For example, the set $\{e, d\}$ is also a nowhere dense subset with respect to τ_1 , even though out-degree of d is nonzero. Analogues to proposition 2 we have:

Proposition 3. Let D = (V, A) be a connected digraph and $U \subseteq V$. Then U is nowhere dense in $(V(D), \tau_2)$ if every vertex of U has in-degree zero.

For example, in Figure 3, $\{b, c\}$ is nowhere dense in $(V(D), \tau_2)$, by proposition 3. Here also not all nowhere dense subsets of V(D) with respect to τ_2 are of the type stated in proposition 3. For example the set $\{d, e\}$ is nowhere dense in $(V(D), \tau_2)$, but the in-degree of d is nonzero.

Proposition 4. Let D = (V, A) be a unilaterally connected digraph. Then any nonempty subset B of the bitopological space (V, τ_1, τ_2) is (1, 2)- dense and (2, 1)- dense in V.

Proof. Let $y \in V \setminus \tau_2 cl(B)$. Since $\tau_2 cl(B)$ is τ_2 closed, it is τ_1 open. Therefore for every $x \in \tau_2 cl(B)$, $(y, x) \notin A(D)$, so that no point of $\tau_2 cl(B)$ is reachable from y. Hence A(y, x) does not hold for any $x \in \tau_2 cl(B)$. But the digraph is unilateral. Hence A(x, y) must hold for every $x \in \tau_2 cl(B)$ and $y \in \tau_1 cl(\tau_2 cl(B))$, which implies that $V \setminus \tau_2 cl(B) \subseteq \tau_1 cl(\tau_2 cl(B))$. Hence $\tau_1 cl(\tau_2 cl(B)) = V$. Using similar arguments we can prove that B is (2, 1)- dense in V.

Proposition 5. Let D = (V, A) be any digraph. A subset A of V(D) is (1, 2)-nowhere dense in V(D) if and only if $A = \phi$.

Proof. Since $\tau_2 clA$ is τ_2 closed, it is τ_1 open. Therefore, $\tau_1 int(\tau_2 clA) = \tau_2 clA = \phi$, which is possible if and only if $A = \phi$.

Analogues to proposition 5 we have the following proposition.

Proposition 6. Let D = (V, A) be any digraph. A subset A of V(D) is (2, 1)-nowhere dense in V(D) if and only if $A = \phi$.

3.3 Separation Axioms in Bitopological Spaces

In this section we give the conditions under which the bitopological spaces associated with digraphs satisfy different bitopological separation axioms. In [5] it is proved that the bitopological space (V, τ_1, τ_2) associated with a digraph is $w - p - T_2$ if and only if the digraph contains no circuit. We give an alternate proof for this result.

Theorem 4. The bitopological space (V, τ_1, τ_2) associated with the digraph D = (V, A) is $w - p - T_2$ if and only if the digraph contains no circuit.

Proof. Let (V, τ_1, τ_2) is $w - p - T_2$. So for $x \neq y$ there exists τ_1 open set U and τ_2 open set W such that $U \cap W = \phi$ and either $x \in U$ and $y \in W$ or $x \in W$ and $y \in U$. If possible let the graph contain a circuit and let x and y be two distinct vertices on the circuit. Then every τ_1 neighborhood of x and τ_2 neighborhood of x contain y, which is a contradiction.

Conversely let the graph contain no circuit. Let x and y be two distinct points in V. It is enough to prove that $O_1(x) \cap O_2(y) = \phi$ or $O_1(y) \cap O_2(x) = \phi$.

Suppose $O_1(x) \cap O_2(y) \neq \phi$ and $O_1(y) \cap O_2(x) \neq \phi$.

Let $z \in O_1(x) \cap O_2(y)$ and $k \in O_1(y) \cap O_2(x)$.

The point $z \in O_1(x) \cap O_2(y)$

 $\Leftrightarrow z \in O_1(x) \text{ and } z \in O_2(y)$ $\Leftrightarrow \exists \text{ a path from } z \text{ to } x \text{ and a path from } y \text{ to } z$ $\Leftrightarrow \exists \text{ a path from } y \text{ to } x$

The point $k \in O_1(y) \cap O_2(x)$

 $\Leftrightarrow k \in O_1(y) \text{ and } k \in O_2(x)$

 $\Leftrightarrow \exists a path from k to y and a path from x to k$ $\Leftrightarrow \exists a path from x to y$

Hence the graph contains a circuit, a contradiction.

Theorem 5. Let (V, τ_1, τ_2) be the bitopological space associated with the digraph D = (V, A). Then the following statements are equivalent.

- 1. (V, τ_1, τ_2) is $w p T_2$.
- 2. (V, τ_1, τ_2) is $w p T_1$.
- 3. (V, τ_1, τ_2) is $w p T_0$.

Proof. The implications of (1) to (2) and (2) to (3) are obvious. Now suppose that (V, τ_1, τ_2) is $w - p - T_0$. Then the digraph contains no circuit. For if the digraph contains a circuit C, then every τ_1 neighborhood and τ_2 neighborhood of each point of C contains all other points of C, a contradiction. Hence (V, τ_1, τ_2) is $w - p - T_2$, by theorem 4.

Theorem 6. The bitopological space (V, τ_1, τ_2) associated with the digraph D = (V, A) is $p - T_2$ if and only if the graph is an empty graph with vertex set V.

Proof. Let (V, τ_1, τ_2) be $p - T_2$. Suppose $(x, y) \in A$ where $x \neq y$. Then every τ_1 neighborhood of y will contain x, a contradiction.

Converse part of the theorem holds trivially.

3.4 Relation between some bitopological, properties and graph theoretical, properties

In this section we analyze the relation between some bitopological properties and graph theoretical properties.

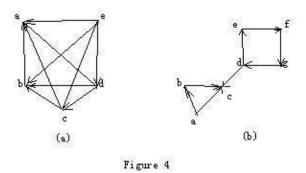
Theorem 7. The bitopological space (V, τ_1, τ_2) associated with the digraph D = (V, A) is pairwise connected if and only if the digraph is strongly connected.

Proof. Suppose that (V, τ_1, τ_2) is pairwise connected. Therefore $V \neq A \cup B$ whenever $A \cap B = \phi$ and either $A \in \tau_1 \setminus \{\phi\}$ and $B \in \tau_2 \setminus \{\phi\}$ or $A \in \tau_2 \setminus \{\phi\}$ and $B \in \tau_1 \setminus \{\phi\}$. Suppose the digraph is not strongly connected. Then there exists $x, y \in V$ such that at least one of A(x, y) and A(y, x) does not hold.

If A(x, y) does not hold, there exists no path from x to y. Therefore $x \notin O_1(y)$ and $y \notin O_2(x)$. Since $x \notin O_1(y), O_1(y) \neq V$ and $V \setminus O_1(y) \neq \phi$. Also $V \setminus O_1(y) \in \tau_2$. Taking $A = O_1(y) \in \tau_1 \setminus \{\phi\}$ and $B = V \setminus O_1(y) \in \tau_2 \setminus \{\phi\}$, we get $V = A \cup B$ and $A \cap B = \phi$, a contradiction. A similar contradiction arises when A(y, x) does not hold.

Conversely suppose the digraph D is strongly connected. In this case the topologies τ_1 and τ_2 coincide with the indiscrete topology of V and hence (V, τ_1, τ_2) is trivially pairwise connected.

Corollary 2. If (V, τ_1, τ_2) is pairwise connected then D is unilaterally connected and hence weakly connected.



Remark 5. The converse of corollary 2 need not be true. For example Figure 4(a) is unilaterally connected. But its associated bitopological space (V, τ_1, τ_2) where $V = \{a, b, c, d, e\}$ is not pairwise connected, since, for $A = \{b, c, d, e\}$ and $B = \{a\}$, $V = A \cup B$, $A \in \tau_1 \setminus \{\phi\}$ and $B \in \tau_2 \setminus \{\phi\}$.

Now Figure 4 (b) is weakly connected. But the associated bitopological space (V, τ_1, τ_2) where $V = \{a, b, c, d, e, f, g\}$ is not pairwise connected, since $A = \{a\} \in \tau_1 \setminus \{\phi\}, B = \{b, c, d, e, f, g\} \in \tau_2 \setminus \{\phi\}$ are such that $V = A \cup B$ and $A \cap B = \phi$

Definition 2. A digraph D is strictly unilaterally connected if $\forall x, y \in V(D)$, exactly one of A(x, y) and A(y, x) holds.

Theorem 8. If the digraph D = (V, A) is strictly unilaterally connected then the bitopological space (V, τ_1, τ_2) associated with the digraph is weakly totally disconnected.

Proof. Let the digraph be strictly unilaterally connected. Then for every $x, y \in V$, exactly one of A(x, y) and A(y, x) holds.

If A(x, y) holds, then $x \in O_1(y)$ but $x \notin O_2(y)$.

Take $A = O_2(y) \in \tau_2$ and $B = V \setminus O_2(y) \in \tau_1$. Since $y \in O_2(y)$ and $x \notin O_2(y)$, $O_2(y) \neq \phi$ and $X \setminus O_2(y) \neq \phi$.

Therefore $V = A \cup B$, $A \in \tau_2 \setminus \{\phi\}$, $B \in \tau_1 \setminus \{\phi\}$, $A \cap B = \phi$, $x \in B$ and $y \in A$. Hence (V, τ_1, τ_2) is weakly totally disconnected.

If A(y, x) holds, a similar proof can be given.

Definition 3. A bitopological space (X, τ_1, τ_2) is strictly totally disconnected if given $x, y \in X, x \neq y$, exactly one of the following holds.

- 1. There exist a pair A, B of disjoint subsets of X such that $X = A \cup B, \ A \in \tau_1 \setminus \{\phi\}, \ B \in \tau_2 \setminus \{\phi\}, \ x \in A \text{ and } y \in B.$
- 2. There exist a pair C, D of disjoint subsets of X such that $X = C \cup D, \ C \in \tau_2 \setminus \{\phi\}, \ D \in \tau_1 \setminus \{\phi\}, \ x \in C \text{ and } y \in D.$

Theorem 9. The bitopological space (V, τ_1, τ_2) associated with the digraph D = (V, A) is strictly totally disconnected if and only if the digraph is strictly unilaterally connected.

Proof. Let (V, τ_1, τ_2) be strictly totally disconnected. Suppose the digraph is not strictly unilaterally connected. Then there exists $x, y \in V$ such that, one of the following happens.

- 1. Both A(x, y) and A(y, x) hold.
- 2. Neither A(x, y) nor A(y, x) hold.

Case1 In this case we suppose that A(x, y) and A(y, x) hold for some x and y in X. So every τ_1 neighborhood of x contains y and every τ_2 neighborhood of y contains x. Also every τ_1 neighborhood of y contains x and every τ_2 neighborhood of x contains y. Therefore for this pair x, y there does not exist a separation, which is a contradiction.

Case2 Neither A(x, y) nor A(y, x) holds. In this case there exists no path from x to y and from y to x. Thus $x \notin O_1(y)$ and $y \notin O_2(x)$. Similarly $y \notin O_1(x)$ and $x \notin O_2(y)$.

Let $A = O_1(y) \in \tau_1 \setminus \{\phi\}$ and $B = X \setminus O_1(y) \in \tau_2 \setminus \{\phi\}$.

Then $X=A\cup B,\ A\cap B=\phi,\ y\in A,\ x\in B$.

Take $C = O_2(y)$ and $D = X \setminus O_2(y)$. Then $X = C \cup D$, $C \cap D = \phi$, $y \in C \in \tau_2 \setminus \{\phi\}$ and $x \in D \in \tau_1 \setminus \{\phi\}$, a contradiction.

Conversely let the digraph be strictly unilaterally connected. Then for every x, y in V, exactly one of A(x, y) and A(y, x) holds. Without loss of generality assume that A(x, y) holds. Then every τ_1 neighborhood of y contains x, but $x \notin O_2(y)$. Take $A = O_2(y)$ and $B = X \setminus O_2(y)$.

Then $V = A \cup B$ where $A \in \tau_2 \setminus \{\phi\}$, $B \in \tau_1 \setminus \{\phi\}$, $A \cap B = \phi$, $y \in A$ and $x \in B$. As A(x, y) holds, x belongs to every τ_1 neighborhood of y. Hence we cannot find a τ_1 neighborhood of y not containing x and a τ_2 neighborhood of x not containing y. Hence (V, τ_1, τ_2) is strictly totally disconnected.

References -

1 Jorgen Bang-Jensen, Gregory Gutin, *Digraphs Theory - Algorithms and Applications*, Springer-Verlag London Limited (2002).

- 3 K. Chandra Sekhara Rao, Topology, Narosa Publishing House, New Delhi (2009).
- 4 Ian E. Cooke and Ivan L. Reilly, On Biopological Compactness, J. London Math. Soc(2), 9(1975), 518-522.
- 5 B.P. Dvalishvili, *Bitopological Spaces: Theory, Relations with Generalized Algebraic Stuctures, and Applications*, Elsevier, Amsterdam, The Netherlands, 2005.
- 6 J.C. Kelley, Bitopological Spaces, Proc. London Math. Soc.(3) 13(1963) 71-89.
- 7 Mrseric M., On Bitopological Separation axioms, Mat Vesnik 36 (1986), NO.3, 313-318.
- 8 T.G. Raghavan, I.L. Reilly, Metrizability of Quasi Metric Spaces, J. London Math. Soc. (2), 15 (1977), No. 1, 169-172.
- 9 Romagueras, Two Characterizations of Quasi pseudometrizable Bitopological Spaces, J. Australian Math. Soc. ser A.35 (1983), No.3, 327-333.
- 10 M.J. Saegrove, Pairwise Complete Regularity and Compactification in Bitopological Spaces, J. London Math. Soc.(2), 7(1973), 286-290.

² T.N. Bhargava, T.J. Ahlborn(Kent Ohio USA), Acta Mathematica Academiae scientiarum Hungaricae Tomus 19 (1-2), (1968), 47-52.