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Abstract In this paper, we apply an elementary approach to conclude the respected theorem(s)/lemma(s)

of [1]. In the paper [1], the author studied the class number imaginary filed theory in more deeply and

prepared manuscript in high order. However, this paper will increase the readability of the paper [1], and

motivate to re-producing the work with additional features on the same area.
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1 Introduction

In 1798 at the age of 21 Carl Friedrich Gauss wrote his classic number theory book Disquisitiones

Arithmeticae, containing many results such as Legendre and Euler, along with many of his own con-

tributions. Gauss addresses issues dealing with the behavior of binary quadratic forms, in particular,

expressions that can be written as ax2 + 2bxy + cy2 with discriminant defined to be b2 − ac. Of course,

now we represent these forms as, with discriminant defined to be b2 − ac. Of course, now we represent

these forms as, ax2 + 2bxy + cy2 with discriminant defined to be b2 − 4ac.

For more references, I would like to suggest studying the standard text books and recent paper [1]

for more introductory material, especially the current research in this particular area. I have seen the

paper [1] closely and I felt to produce a simple proof of theorem 4.2 of [1] and addendum at page number

25 of [1]. Also, the lemma 2.5 of page number 6 of [1]. This is not subsequent of paper [1] and there is

no comparison of [1] with this paper, as [1] has its own importance.

2 Preliminaries

I would like to suggest, the readers to study [1] and the following preliminaries definitions and basic

definitions for better understanding. I have seen the entire paper of [1] and it is quite interesting and I

would like to add my own aroma to [1], see the third section and let me know the taste of the paper.
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Definition 2.1. A binary quadratic form f(x, y) = ax2+bxy+cy2 is called positive definite if f(x, y) 6 0

However, in the case of negative definite. To concern the positive definite form, we fix a > 0 with

∆ = b2 − 4ac < 0 and by a simple square completion, we see

ax2 + bxy + cy2 = a([x +
by

2a
]2 − [∆][

y

2a
]2).

Definition 2.2. If fx,y = gm,n with (m, n) = L(x, y) for L ∈ SL(2, Z) then we say fx,y and gx,yare

equivalent. In case, L has ∆ = +1, then f and g are properly equivalent.

Example 2.3. Consider ∆ = −20 of

x2 + 5y2 (1)

and

2x2 + 2xy + 3y2 (2)

are not equivalent forms. Let the transform () ∈ SL(2, Z) of x and y of (1) yields in (5C2 + A2)x2 +

(2AB+10CD)xy+(5D2+B2)y2 where the coefficients will not match to the coefficients of (2) as A, B, C

and D are in Z. However, to find these various points, we can see them only at {1, 9} in U(Z/20Z) for

(1) and {3, 7} for (2).

Definition 2.4. A complex quadratic number field is a field Q(
√

d) where d < 0 is a square free.

Example 2.5. Consider, Q(
√
−5) has ring of integers [2] O−5 = Z⌊

√
d⌉.

Observe that element 6 can be factorized in two differ ways, as 6 = 2.3 = (1 −
√
−5)(1 +

√
−5).

Now the norm of any element of will be, N(a + b
√
−5) = a2 + 5b2 6= 2 or 3. As elements of norm 6 is

irreducible, and we see; N(1 +
√
−5) = 6 = N(1 −

√
−5) As and N(2) = 2.2, there is no solution of

l2 + 5m2 = 2 in integers.

Theorem 2.6. Any odd prime p can be written in the form of x2 + y2 when p ≡ 1(mod4).

The above theorem is well known by Fermat. Let L = (1, 0, 1) and L has ∆ = −4. If (a, b, c)

is reduced representative of some equivalence class [3] with ∆ ⇒ |b| 6 a 6 |c| and ∆ = −4. Thus

b2 = 4(ac−1). Since |ac| > b2, we should have ac−1 = 0. The only form of L is (1, 0, 1). Thus h(−4) = 1

and p can be expressible by (1, 0, 1) if and only if −4 ≡ ∆(mod4p). Similarly one can show that any

odd prime p can be expressible in the form x2 +2y2 when p ≡ 1 or 3 (mod8). The above section is might

be useful to realize [1].

3 Theorem(s) from [1]

In [1], (see page number 25). If n is even integer > 5, then the class number of Q(
√

32e − 4kn) (#)

is divisible by n except (k, n) = (13, 8). The reason for this statement is quite unclear to readers. Let me

discuss the reason behind this statement!

Let α =
√

1 − 4kn and let K = Q(
√

α). For k > 1, the minimal polynomial θ = 1+α
2 of and it is

θ2 − θ + kn = 0. Indeed, we even have Z[α] is the ring of integers of K. Let p be a prime dividing k.

92



South Asian J. Math. Vol. 3 No. 1

Then p splits in K, as can be seen by factoring the polynomial above modulo p. Indeed, there is a unique

such ideal which divides θ, namely p = (p, θ). Equally, every prime dividing θ also divides k. Since θ and

1 − θ are co-prime, and since θθ = θ(1 − θ) = kn, it follows that the exponent of p in θ is n-times the

exponent of p in k. In particular, there exists an ideal a of norm k such that an = θ. Suppose that is

principal. Then

km = N(a) = a2 + ab + b2kn = (a +
b

2
)2 + b2(kn − 1

4
) > kn,

as long as b 0. Yet if b = 0, then θm = amn = an, and then θ = ±an (the only units in K are ±1),

which is nonsense. Hence and thus m > n (using the fact that k > 1), and thus the order of a in the

class group [4] is exactly n. It follows that the class number is divisible by n for any n. From the above

proof, one can realize that, it is not only for n = 2, 4, n = 1597 and any other natural number.

The following theorem is drawn from [1] (see theorem 4.2 at [1]), however one can realize by my

flavor.

Theorem 3.1. Let n be a positive integer, l an odd prime number and e is a non-negative integer. If

(n, e) 6= (4, 0), then the class number of imaginary quadratic fields Q(
√

1 − 4(2le)n) are divisible by n.

Proof. let us take in the place of then our theorem reduced from Q(
√

1 − 4(2le)n) to Q(
√

1 − 4kn),

which is very same as (#). Thus, the required proof is concluded. The following lemma 3.2 is lemma 2.5

of [1] at page 6. �

Lemma 3.2. (1) The equation x4 − 2y2 = 1 has no positive integer solution (x, y). (2) The equation

x4 − 2y2 = −1 has only one positive integer solution (x, y) = (1, 1).

Proof. The only integer solutions of x4−2y2 = 1 are (1, 0) and (−1, 0). For x has to be odd, re-write

the equation as (x2 − 1)(x2 +1) = 2y2 with (x2 +1, x2 − 1) = 2. Since x2 +1 is in the form of 8k +2 and

it follows that x2 + 1 = 2m2 and x2 − 1 = n2 for some integers of m and n. Obviously, the only integer

solutions of x2−1 = n2 are (x, n) = (−1, 0), (1, 0), since 1 and 0 are the only perfect squares, which differ

by 1. �
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