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Abstract In this paper we introduce the concept of smoothness of the space X×V (z), where (X, ‖., .‖)

is a linear 2-normed space and V (z) is the space spanned by some z ∈ X , in terms of the bilinear

functionals on X × V (z). We characterize smoothness in terms of the normalized duality mapping and

in terms of the Gâteaux differentiability of the function x 7→ ‖x, z‖ .
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1 Introduction

After the introduction of the concept of linear 2-normed spaces and 2- metric spaces by S.Gähler

through his papers [9, 10] in 1960’s, the subject has got attention of many mathematicians like Y.J.Cho,

C.R.Diminnie, R.W.Freese, A.White, S.S.Dragomir and they developed extensively the geometric struc-

ture of linear 2-normed spaces [1, 2, 3, 5, 6, 11]. Studies of linear 2-normed spaces are still intensive and

updating the subject with new concepts. The smoothness related concepts are well known in normed

linear spaces.

Our interest here is to study the concept of smoothness in the setting of linear 2-normed spaces.

We introduced the smoothness in terms of the linear 2-functionals and we revealed that the concept is

equivalent to the univocalness of the normalized duality mapping and the Gâteaux differentiability of the

function which maps x 7→ ‖x, z‖.

2 Preliminary Notes

The concept of 2-norms on a real linear space X of dimension greater than one, is introduced in [9],

as a 2 dimensional analogue of a norm, and is defined as a real valued function ‖., .‖, defined on X × X

satisfying the following conditions:

For all x, y, z ∈ X and α ∈ R,
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N1. ‖x, y‖ = 0 if and only if x and y are linearly dependent,

N2. ‖x, y‖ = ‖y, x‖ ,

N3. ‖αx, y‖ = |α|‖x, y‖and

N4. ‖x, y + z‖ 6 ‖x, y‖ + ‖x, z‖.

The pair (X, ‖., .‖) is called a linear 2-normed space.

A simple and standard example of a 2-norm is the 2-norm ‖., .‖ on R
2, defined by ‖a, b‖ = |a1b2−a2b1|

where a = (a1, a2), b = (b1, b2) ∈ R
2. Geometrically this is the area of the parallelogram determined by

the vectors a and b as the adjacent sides.

If the limit limt→0
‖x+ty,z‖−‖x,z‖

t
exists, we say that the 2-norm ‖., .‖ is Gâteaux differentiable at

(x, z) in the direction y.

We recall the concept of normalized duality mapping in normed linear spaces and some of its prop-

erties. Let (X, ‖.‖) be a normed space and X∗ be the dual space of X ( the set of all bounded linear

functionals on X). Then the notion of normalized duality mapping J : X → 2X∗

which is defined by

J(x) = {x∗ ∈ X∗ : x∗(x) = ‖x‖2 and ‖x∗‖ = ‖x‖}, is well known. A section J̃ of J is a function from

X → X∗ satisfying the condition J̃(x) ∈ J(x) ∀x ∈ X (see [4]). A normed space is smooth at 0 6= x ∈ X ,

if there exists a unique bounded linear functional f on X such that f(x) = ‖x‖ and ‖f‖ = 1 and X is

said to be smooth if it is smooth at every of its non zero point. The characterizations of smooth normed

spaces are well known (see [4, 10]).

Theorem 2.1. (cf.[8]) Let X be a normed space and x0 ∈ X with ‖x0‖ = 1. Then the space X is smooth

at x0 if and only if the normalized duality mapping at x0, J(x0) contains a unique element in X∗.

Definition 2.2. Let (X, ‖., .‖) be a linear 2-normed space. A function F : X × X → R is called linear

2-functional (or bilinear functional) if for a, b, c, d ∈ X and α, β ∈ R, we have

(i) F (a + b, c + d) = F (a, c) + F (a, d) + F (b, c) + F (b, d),

(ii) F (αa, βb) = αβF (a, b).

A bilinear functional F on (X, ‖., .‖) is called bounded if there exists M > 0 such that |F (a, b)| 6

M‖a, b‖ ∀ a, b ∈ X . If F is bounded we can define norm of F by ‖F‖ = inf{M : |F (a, b)| 6

M‖a, b‖ ∀ a, b ∈ X}.

3 Normalized Duality Mapping and Some Basic Properties

We start with the definition of normalized duality mapping which is in fact derived from the duality

mapping defined in [5], and discuss some of its basic properties, which enable us to define sections of a

normalized duality mapping as bounded bilinear functionals on X × V (z).

Definition 3.1. Let (X, ‖., .‖) be a linear 2-normed space , z ∈ X . Suppose X†
z denotes the set of all

bounded linear 2-functionals on X × V (z). The mapping Jz : X × V (z) → 2X†
z defined by

Jz(x, z) = {F ∈ X†
z : F (x, z) = ‖x, z‖2 and ‖F‖ = ‖x, z‖}

is called the normalized duality 2-mapping on X × V (z).
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Theorem 3.2. Let (X, ‖., .‖) be a linear 2-normed space Jz be the normalized duality mapping on X ×

V (z). Then Jz(x, z) is a non empty convex subset of X†
z for every (x, z) ∈ X × V (z).

Proof. If ‖x, z‖ = 0 then Jz(x, z) = {0}, which is non empty and convex. Assume that x ∈ X such that

‖x, z‖ 6= 0. Let g : V (x) × V (z) → R be defined by

g(λx, µz) = λµ‖x, z‖2

Then g is bilinear on V (x)×V (z) because, if x1 = λ1x, x2 = λ2x ∈ V (x) and z1 = µ1z, z2 = µ2z ∈ V (z).

Then we have

g(x1 + x2, z1 + z2) = g((λ1 + λ2)x, (µ1 + µ2)z)

= (λ1 + λ2)(µ1 + µ2)‖x, z‖2

= λ1µ1‖x, z‖2 + λ1µ2‖x, z‖2 + λ2µ1‖x, z‖2 + λ2µ2‖x, z‖2

= g(x1, z1) + g(x1, z2) + g(x2, z1) + g(x2, z2)

Also

g(αx1, βz1) = g(αλ1x, βµ1z)

= αλ1βµ1 g(x, z)

= αβg(x1, z1)

We have

|g(x1, z1)| = |λ1µ1‖‖x, z‖2

= ‖λ1x, µ1z‖‖x, z‖

= ‖x, z‖‖x1, z1‖

So g is a bounded linear 2-functional on V (x) × V (z), with |g| = ‖x, z‖. Applying the Hahn- Banach

extension theorem for bounded linear 2-functionals we get a bounded linear 2-functional F : X×V (z) → R

such that F (x, z) = ‖x, z‖2 and ‖F‖ = ‖x, z‖. That is F ∈ Jz(x, z) so that Jz(x, z) is non empty.

To show Jz(x, z) is convex, assume F1, F2 ∈ Jz(x, z).
(

i.e, F1(x, z) = ‖x, z‖2 and ‖F1‖ = ‖x, z‖; F2(x, z) = ‖x, z‖2 and ‖F2‖ = ‖x, z‖.
)

Now for 0 < λ < 1, we

have (λF1 + (1 − λ)F2)(x, z) = ‖x, z‖2.

For ‖x, z‖ 6= 0,

0 < ‖x, z‖ = (λF1 + (1 − λ)F2)(
x

‖x, z‖
, z)

6 ‖λF1 + (1 − λ)F2)‖ (1)

(Since‖F‖ = sup{|F (x, z)|; ‖x, z‖ = 1})

Also

‖λF1 + (1 − λ)F2‖ 6 λ‖F1‖ + (1 − λ)‖F2‖

= λ‖x, y‖ + (1 − λ)‖x, z‖

= ‖x, z‖ (2)
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From (1) and (2) we have ‖λF1 + (1 − λ)F2‖ = ‖x, z‖. Thus λF1 + (1 − λ)F2 ∈ Jz(x, z). Therefore

Jz(x, z) is a non empty convex subset of X†
z .

Theorem 3.3. Let (X, ‖., .‖) be a linear 2-normed space and z ∈ X. If Jz is the normalized duality

mapping on X × V (z), then Jz(λx, z) = λJz(x, z) ∀λ ∈ R.

Proof. If λ = 0 or ‖x, z‖ = 0 the result is trivially true. Assume λ 6= 0 and ‖x, z‖ 6= 0. We know if

F ∈ X†
z then 1

λ
F ∈ X†

z .

Suppose F ∈ X†
z then

F ∈ Jz(λx, z) ⇐⇒ F (λx, z) = ‖λx, z‖2 and ‖F‖ = ‖λx, z‖

⇐⇒ λF (x, z) = λ2‖x, z‖2 and ‖F‖ = |λ|‖x, z‖

⇐⇒
1

λ
F (x, z) = ‖x, z‖2 and ‖

1

λ
F‖ = ‖x, z‖

⇐⇒
1

λ
F ∈ Jz(x, z) ⇐⇒ F ∈ λJz(x, z).

Therefore Jz(λx, y) = λJz(x, y)

A similar argument above would yield that Jz(x, λz) = λJz(x, z) for λ ∈ R.

Definition 3.4. (Section of normalized duality mapping) Let (X, ‖., .‖) be a linear 2-normed space and

Jz be the normalized duality mapping on X×V (z). Then a section J̃z of Jz is a map from X×V (z) → X†
z

satisfying J̃z(x, z) ∈ Jz(x, z) ∀x ∈ X.

Theorem 3.5. If Sz(X) denotes the unit sphere in X × V (z) given by Sz(X) = {(x, z) : ‖x, z‖ = 1}.

Then the following are equivalent:

(1) Every bounded linear 2-functional attains its norm on Sz(X). i.e, for F ∈ X†
z there exists

(x0, z) ∈ Sz(X) such that F (x0, z) = ‖F‖

(2) Given F ∈ X†
z there exists (x, z) ∈ X ×V (z) and a section J̃z of the normalized duality mapping

Jz such that F = J̃z(x, z).

Proof. Assume (1) and let F ∈ X†
z . Then there exists (x0, z) ∈ X×V (z) with ‖x0, z‖ = 1 and F (x0, z) =

‖F‖ (1)

Let (x, z) = (‖F‖x0, z). We claim that F ∈ Jz(x, z).

Now

F (x, z) = ‖F‖F (x0, z)

= ‖F‖2 = ‖x, z‖2, from(1) and by the choice of (x, z)

and ‖F‖ = ‖x, z‖

Therefore there exists a section J̃z of Jz such that F = J̃z(x, z).

Next we prove the converse part. If F = 0 then for any point (x, z) ∈ Sz(X) we have F (x, z) = ‖F‖.

Assume that for every 0 6= F ∈ X† there exits (x, z) ∈ X × V (z) with ‖x, z‖ 6= 0 such that F = J̃z(x, z).

Then for (u, z) = ( x
‖x,z‖ , z) ∈ Sz(X),

F (u, z) =
1

‖x, z‖
F (x, z) =

1

‖x, z‖
‖x, z‖2
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= ‖x, z‖ = ‖F‖.

This proves the theorem.

4 Normalized Duality Mapping and Smoothness

In this section our objective is to define the smoothness of the space X × V (z) and to establish

the equivalency of the definition with the Gâteaux differentiability of the semi norm pz(x) = ‖x, z‖ and

uniqueness of section of the normalized duality mapping. At the end we characterize the smoothness of a

linear 2-normed space X in terms of the differentiability of the semi norms pz(x) = ‖x, z‖ for all z ∈ X .

Definition 4.1. Let (X, ‖., .‖) be a linear 2-normed space and let (x, z) ∈ X×V (z) such that ‖x, z‖ 6= 0.

We say that X × V (z) is smooth at the point (x, z) if there is a unique bounded linear 2-functional

F ∈ X†
z such that F (x, z) = ‖x, z‖ and ‖F‖ = 1. The space X ×V (z) is said to be smooth if it is smooth

at every (x, z) ∈ X × V (z) for which ‖x, z‖ 6= 0.

Theorem 4.2. Let (X, ‖., .‖) be a linear 2-normed space and z ∈ X. Suppose x0 ∈ X be such that

‖x0, z‖ 6= 0. Then the following are equivalent:

1. X × V (z) is smooth at (x0, z).

2. Jz(x0, z) contains a unique element. In other words any section of the normalized duality mapping

Jz assumes the same 2-functional at (x0, z).

Proof. Let X × V (z) be smooth at (x0, z). Let F1 6= F2 ∈ Jz(x0, z). That is F1(x0, z) = ‖(x0, z)‖2 and

‖F1‖ = ‖(x0, z)‖; F2(x0, z) = ‖(x0, z)‖2 and ‖F2‖ = ‖(x0, z)‖.

Then f1 = 1
‖F1‖

F1 and f2 = 1
‖F2‖

F2 are in X†
z such that f1(x0, z) = 1

‖F1‖
F1(x0, z) = ‖(x0,z)‖2

‖(x0,z)‖ =

‖(x0, z)‖ and ‖f1‖ = 1. Similarly f2(x0, z) = ‖(x0, z)‖ and ‖f2‖ = 1, which contradicts the smoothness

of X × V (z) at (x0, z). Therefore (1) ⇒ (2).

If X × V (z) is not smooth at (x0, z) then there exist two bounded linear 2-functional f1 and f2

such that f1 6= f2 and ‖f1‖ = ‖f2‖ = 1 and f1(x0, z) = f2(x0, z) = ‖x0, z‖. Take F1 = ‖x0, z‖f1 and

F2 = ‖x0, z‖f2. Then F1(x0, z) = ‖x0, z‖
2; ‖F1‖ = ‖x0, z‖ and F2(x0, z) = ‖x0, z‖

2; ‖F2‖ = ‖x0, z‖,

implying that Jz(x0, z) is not singleton. So (2) ⇒ (1).

Lemma 4.3. Let (X, ‖., .‖) be a linear 2-normed space and F : X × X → R be a bounded linear 2-

functional on X. Let c 6= 0 be in X. Consider the quotient space Xc = X/V (c) with norm given by

‖(x)c‖ = ‖x, c‖, where (x)c = x + V (c) ∈ Xc. Define Fc : Xc → R by Fc((x)c) = F (x, c). Then Fc is a

bounded linear functional on Xc.

Proof. First of all we show that Fc is well defined. Let (x)c = (y)c. Then

x − y ∈ V (c) ⇒ F (x − y, c) = F (αc, c) for some α ∈ R

⇒ ‖F (x − y, c)‖ 6 ‖F‖‖αc, c‖ = 0

⇒ F (x, c) = F (y, c)

⇒ Fc((x)c) = Fc((y)c).
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Fc is linear because:

Fc((x)c + (y)c) = Fc((x + y)c) = F (x + y, c)

= F (x, c) + F (y, c) = Fc((x)c) + Fc((y)c)

and F(α(x)c) = Fc((αx)c) = F (αx, c)

= αF (x, c) = αFc((x)c).

Fc is bounded for:

‖Fc‖ = sup{|Fc((x)c)| : ‖(x)c)‖ 6 1}

= sup{|F (x, c)| : ‖x, c‖ 6 1}

6 ‖F‖.

Lemma 4.4. Let (X, ‖., .‖) be a linear 2-normed space and 0 6= c ∈ X. Suppose x ∈ X is such that

‖x, c‖ 6= 0. If X × V (c) is smooth at (x, c) then the normed space Xc is smooth at (x)c.

Proof. Suppose Xc is not smooth at (x)c. Then there exists Fc and Gc in X∗
c such that Fc 6= Gc; Fc((x)c) =

‖(x)c)‖, ‖Fc‖ = 1 and Gc((x)c) = ‖(x)c)‖, ‖Gc‖ = 1 with ‖x, c‖ 6= 0.

Define a bounded linear 2-functional F on X × V (c) by

F (x, c) = Fc((x)c)

Then F (x, c) = ‖(x)c‖ = ‖x, c‖.

Hence ‖F‖ = inf{k : |F (x,c)|
‖x,c‖ 6 k, ∀x ∈ X} 6 1. As in the proof of lemma 4.3 we can prove that

‖Fc‖ 6 ‖F‖. Thus we have ‖F‖ = 1.

Similarly we can find a G ∈ X†
c corresponding to Gc satisfying

G(x, c) = ‖(x)c‖ and ‖G‖ = 1.

Which contradicts the smoothness of X × V (c) at (x, c). Therefore Xc is smooth at (x)c.

The lemma follows, justifies the convergence of sequence of certain sections of normalized duality

mapping, if the underlined space is smooth.The proof goes in line with the proof provided in [8].

Lemma 4.5. Let (X, ‖., .‖) be a linear 2-normed space and 0 6= c ∈ X. Let X×V (c) be smooth and (xn) be

a sequence in X such that ‖xn, c‖ = 1 ∀n ∈ N. Let (Fn) be a sequence in X†
c , with Fn(xn, c) = ‖(xn, c)‖2 =

1 and ‖Fn‖ = 1. If ‖xn − x0, c‖ → 0 as n → ∞ then for all x ∈ X, (Fn(x, c)) → F (x, c) as n → ∞,

where ‖x0, c‖ = 1 and F ∈ X†
c which satisfies F (x0, c) = ‖x0, c‖

2 = 1 and ‖F‖ = 1.

Proof. Consider Xc = X/V (c). As X × V (c) is smooth we have by lemma 4.4, Xc is smooth. Define

Fnc
: Xc → R by Fnc

((x)c) = Fn(x, c) ∀n ∈ N. Then by lemma 4.3, (Fnc
) is a sequence of bounded linear

functionals on the smooth normed space Xc satisfying Fnc
((xn)c) = ‖(xn)c‖

2 = 1 and ‖Fnc
‖ = ‖(xn)c‖ =

1 and ((xn)c) is sequence in Xc such that (xn)c

‖.‖c

−→ (x0)c. We claim that Fnc
→ Fc in the weak-star

topology σ(X∗
c , Xc) of X∗

c , where Fc ∈ X∗
c satisfies Fc((x0)c) = ‖(x0)c‖

2 = 1 and ‖Fc‖ = ‖(x0)c‖ = 1.
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We assume the contrary that (Fnc
) does not converge to Fc in σ(X∗

c , Xc). Then there exists a

neighborhood U of Fc in σ(X∗
c , Xc) such that the exterior of U contains infinite number of terms of the

sequence (Fnc
). We denote these terms by Fnkc

, k ∈ N. Since the unit ball in the dual space X∗
c is

σ(X∗
c , Xc)-compact (by the Banach- Alaoglu theorem), (Fnkc

) has a sub sequence (Fnqc
) which converges

to linear functional Gc in the topology σ(X∗
c , Xc), with ‖Gc‖ 6 1. Also we have,

|Gc((x0)c) − 1| = |Gc((x0)c) − Fnqc
((xnq

)c)|

6 |Gc((x0)c) − Fnqc
((x0)c)| + |Fnqc

((x0)c) − Fnqc
((xnq

)c)|

6 |Gc((x0)c) − Fnqc
((x0)c)| + ‖Fnqc

‖‖(x0)c − (xnq
)c‖

= |Gc((x0)c) − Fnqc
((x0)c)| + ‖(x0)c − (xnq

)c‖.

As q → 0 the right side tends to 0, and so Gc((x0)c) = 1. Therefore ‖Gc‖ = 1. Thus Gc and Fc are

two bounded functionals on Xc satisfying the conditions Fc((x0)c) = ‖(x0)c‖
2 ; ‖Fc‖ = ‖(x0)c‖ and

Gc((x0)c) = ‖(x0)c‖
2 ; ‖Gc‖ = ‖(x0)c‖, we infer that they are in J((x0)c). As Xc is smooth by theorem

2.1, J((x0)c) is singleton and so Fc = Gc. Which contradicts the existence of the neighborhood U . Hence

(Fnc
) → Fc in σ(X∗

c , Xc).

i.e, Fnc
((x)c) → Fc((x)c) ∀ (x)c ∈ Xc

or Fn(x, c) → F (x, c) ∀x ∈ X

Where F ∈ X†
c is such thatF ((x0, c) = ‖(x0, c‖

2 = 1 and ‖F‖ = ‖(x0, c‖ = 1.

The following remark is an immediate consequence of the above theorem.

Remark 4.6. Let(X, ‖., .‖) be a linear 2-normed space and X × V (z) be smooth. If (xn) is a sequence in

X with the property that ‖xn, z‖ = 1 and ‖xn−x0, z‖ → 0, then we have J̃z(xn, z)(x, z) → J̃z(x0, z)(x, z)

for all x ∈ X .

Theorem 4.7. Let (X, ‖., .‖) be a linear 2-normed space and (x0, z) ∈ Sz(X). If X × V (z) is smooth,

then the Gâteaux derivative of the function x 7→ ‖x, z‖ at x0 exists in any direction y ∈ X.

Proof. Assume that X ×V (z) is smooth. Let (xn) be a sequence in X such that ‖xn, z‖ = 1 ∀n ∈ N and

‖xn − x0, z‖ → 0 as n → ∞. Let J̃z be a section of Jz . Then we have J̃z(xn, z)(xn, z) = ‖xn, z‖2 = 1

and ‖J̃z(xn, z)‖ = ‖xn, z‖ = 1.

By remark 4.6 for all x ∈ X , we have

J̃z(xn, z)(x, z) → J̃z(x0, z)(x, z) as ‖xn − x0, z‖ → 0 (1)

For t 6= 0 and y ∈ X we have,

‖x0 + ty, z‖ − ‖x0, z‖ =
1

‖x0, z‖

(

‖x0, z‖‖x0 + ty, z‖ − ‖x0, z‖
2
)

>
1

‖x0, z‖

(

J̃z(x0, z)(x0 + ty, z) − ‖x0, z‖
2
)

(∵ |J̃z(x0, z)(x0 + ty, z)| 6 ‖J̃z(x0, z)‖‖x0 + ty, z‖)

=
t

‖x0, z‖
J̃z(x0, z)(y, z)
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Then for t > 0,
1

‖x0, z‖
J̃z(x0, z)(y, z) 6

‖x0 + ty, z‖ − ‖x0, z‖

t
(2)

On the other hand we have,

‖x0 + ty, z‖ − ‖x0, z‖

t
=

1

t‖x0 + ty, z‖

(

‖x0 + ty, z‖2 − ‖x0 + ty, z‖‖x0, z‖
)

=
1

t‖x0 + ty, z‖

(

J̃z(x0 + ty, z)(x0 + ty, z) − ‖x0 + ty, z‖‖x0, z‖
)

=
1

t‖x0 + ty, z‖

(

J̃z(x0 + ty, z)(x0, z) + tJ̃z(x0 + ty, z)(y, z)− ‖x0 + ty, z‖‖x0, z‖
)

6
1

t‖x0 + ty, z‖
tJ̃z(x0 + ty, z)(y, z)

(∵ |J̃z(x0 + ty, z)(x0, z)| 6 ‖J̃z(x0 + ty, z)‖‖x0, z‖)

i.e,
‖x0 + ty, z‖ − ‖x0, z‖

t
6 J̃z(

x0 + ty

‖x0 + ty, z‖
, z)(y, z) (By theorem 3.3) (3)

From (2) and (3) we have

J̃z(x0, z)(y, z) 6
‖x0 + ty, z‖ − ‖x0, z‖

t
6 J̃z(

x0 + ty

‖x0 + ty, z‖
, z)(y, z) (4)

Let xt = x0+ty

‖x0+ty,z‖ . Then ‖xt, z‖ = 1 and xt → x0 as t → 0. By taking t → 0 and using (1), (4)

becomes,

J̃z(x0, z)(y, z) 6 lim
t→0+

‖x0 + ty, z‖ − ‖x0, z‖

t
6 J̃z(x0, z)(y, z)

The right Gâteaux derivative of the function x 7→ ‖x, z‖, at x0 in the direction of y is given by

D1
+[x0,z](y) = lim

t→0+

‖x0 + ty, z‖ − ‖x0, z‖

t
= J̃z(x0, z)(y, z)

The left Gâteaux derivative of the function x 7→ ‖x, z‖, at x0 in the direction of y is then given by,

D1
−[x0,z](y) = lim

t→0−

‖x0 + ty, z‖ − ‖x0, z‖

t

= − lim
t→0+

‖x0 − ty, z‖ − ‖x0, z‖

t

= −D1
+[x0,z](−y)

= −J̃z(x0, z)(−y, z)

= J̃z(x0, z)(y, z)

= D1
+[x0,z](y).

Therefore the Gâteaux derivative of the function x 7→ ‖x, z‖ at x0 in any direction y exists and the

derivative is given by

D1
[x0,z](y) = J̃z(x0, z)(y, z).

This complets the proof.
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Theorem 4.8. Let (X, ‖., .‖) be a linear 2-normed space and 0 6= z ∈ X. If the Gâteaux derivative of

the function x 7→ ‖x, z‖ at x ∈ X with ‖x, z‖ 6= 0, in any direction exists, then the normalized duality

mapping Jz at (x, z) is singleton.

Proof. For ‖x, z‖ 6= 0, consider (x0, z) = ( x
‖x,z‖ , z). Then we have ‖x0, z‖ = 1. Assume that the Gâteaux

derivative of the function x 7→ ‖x, z‖ at x0 exist, in any direction y ∈ X . For t > 0 and for every section

J̃z of the normalized duality mapping Jz, we have from the inequality (2) in the proof of the theorem 4.7

that

J̃z(x0, z)(y, z) 6
‖x0 + ty, z‖ − ‖x0, z‖

t

Which implies for s < 0,
‖x0 + sy, z‖ − ‖x0, z‖

s
6 J̃z(x0, z)(y, z)

As the Gâteaux derivative of the function x 7→ ‖x, z‖ exists at x0, from the above two inequalities we get

the Gâteaux derivative of the function x 7→ ‖x, z‖ at x0, in the direction of y,

D1
[x0,z](y) = J̃z(x0, z)(y, z). (4)

Suppose Jz(x0, z) contains two distinct functionals F1 and F2 and J̃1
z and J̃2

z be the sections of Jz such

that J̃1
z (x0, z) = F1 and J̃2

z (x0, z) = F2. Then from the relation (4) above we have J̃1
z (x0, z)(y, z) =

J̃2
z (x0, z)(y, z)

i.e, F1(y, z) = F2(y, z) ∀y ∈ X. (5)

As F1, F2 ∈ X†
z , the above equation implies F1 = F2. Thus Jz(x0, z) is singleton.

Corollary 4.9. Let (X, ‖., .‖) be a linear 2-normed space and z ∈ X. Then the following are equivalent:

(i). X × V (z) is smooth.

(ii). The normalized duality mapping Jz at (x, z) is singleton for each x ∈ X.

(iii). The function x 7→ ‖x, z‖ Gâteaux differentiable at any point x ∈ X with ‖x, z‖ 6= 0, in any direction.

Proof. Let X × V (z) be smooth and suppose x ∈ X such that ‖x, z‖ 6= 0. Consider (x0, z) = ( x
‖x,z‖ , z).

Then we have ‖x0, z‖ = 1. By theorem 4.2, we have the following are equivalent:

(1) X × X is smooth at (x0, z);

(2) the normalized duality mapping Jz at(x0, z) is singleton.

By theorem 4.7, (2) implies that the Gâteaux derivative of the function x 7→ ‖x, z‖ at x0 exist, in any

direction.

The implication of (ii) by (iii) follows from theorem 4.8.

The equivalence of (i), (ii) and (iii) are then followed from the facts that x ∈ X with ‖x, z‖ 6= 0 is

arbitrary, (x0, z) = ( x
‖x,y‖ , y) and ‖x, z‖Jz(x0, z) = Jz(x, z) .

Theorem 4.10. Assume (X, ‖., .‖) be a linear 2-normed space and z ∈ X. Then the following are

equivalent:

(i). X × V (z) is smooth.
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(ii). For any section J̃z of the normalized duality mapping Jz on X × V (z) and ∀x ∈ X with ‖x, z‖ 6= 0,

we have

lim
t→0

J̃z(x + ty, z)(y, z) = J̃z(x, z)(y, z) ∀y ∈ X (1)

(iii). For all x ∈ X with ‖x, z‖ 6= 0, we have,

lim
t→0

J̃z(x + ty, z)(x, z) − J̃z(x, z)(x, z)

t
= J̃z(x, z)(y, z) (2)

Proof. Using the inequalities (4) in the proof of the theorem 4.7, for all x ∈ X with ‖x, z‖ 6= 0 and t > 0

we have,

J̃z(
x

‖x, z‖
, z)(y, z) 6

‖x + ty, z‖ − ‖x, z‖

t
6 J̃z(

x + ty

‖x + ty, z‖
, z)(y, z) ∀y ∈ X (3)

In the inequality (2) in the proof of the theorem 4.7, changing x0 by x + ty we get the inequality

J̃z(
x + ty

‖x + ty, z‖
, z)(y, z) 6

‖x + 2ty, z‖ − ‖x + ty, z‖

t
(4)

From (3) and (4) we have,

lim
t→0+

‖x + ty, z‖ − ‖x, z‖

t
6 lim

t→0+
J̃z(

x + ty

‖x + ty, z‖
, z)(y, z)

6 lim
t→0+

‖x + 2ty, z‖ − ‖x + ty, z‖

t

= lim
t→0+

2.
‖x + 2ty, z‖ − ‖x, z‖

2t

− lim
t→0+

‖x + ty, z‖ − ‖x, z‖

t

= lim
s→0+

2.
‖x + sy, z‖ − ‖x, z‖

s

− lim
t→0+

‖x + ty, z‖ − ‖x, z‖

t

= lim
t→0+

‖x + ty, z‖ − ‖x, z‖

t
.

Therefore we get,

lim
t→0+

‖x + ty, z‖ − ‖x, z‖

t
= lim

t→0+
J̃z(

x + ty

‖x + ty, z‖
, z)(y, z) (5)

Assume (i). Then the Gâteaux derivative of the function x 7→ ‖x, z‖ at x exists in any direction y ∈ X

and so (5) becomes,

D1
[x,z](y) = lim

t→0+
J̃z(

x + ty

‖x + ty, z‖
, z)(y, z)

i.e, ‖x, z‖ D1
[x,z](y) = lim

t→0+
J̃z(x + ty, z)(y, z) (6)

Replacing y by −y in (6), we get

‖x, z‖ D1
[x,z](−y) = lim

t→0+
J̃z(x − ty, z)(−y, z)
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= − lim
t→0+

J̃z(x − ty, z)(y, z)

∴ lim
t→0+

J̃z(x − ty, z)(y, z) = ‖x, z‖ D1
[x,z](y)

(∵ D1
[x,z](−y) = −D1

[x,z](y))

i.e, lim
s→0−

J̃z(x + sy, z)(y, z) = ‖x, z‖ D1
[x,z](y) (7)

It follows from (6) and (7) that limt→0 J̃z(x + ty, z)(y, z) exists and that

lim
t→0

J̃z(x + ty, z)(y, z) = ‖x, z‖ D1
[x,z](y) ∀y ∈ X (8)

Also from the inequalities (4) in the proof of the theorem 4.7, for all x ∈ X with ‖x, z‖ 6= 0 and s < 0

and t > 0 we have,

‖x + ty, z‖ − ‖x, z‖

s
6 J̃z(

x

‖x, z‖
, z)(y, z) 6

‖x + ty, z‖ − ‖x, z‖

t
(9)

Letting s → 0− and t → 0+ in (9) and using the smoothness of X × V (z) at (x, z) we have,

‖x, z‖ D1
[x,z](y) = J̃z(x, z)(y, z) (10)

From (8) and (10)we get

lim
t→0

J̃z(x + ty, z)(y, z) = J̃z(x, z)(y, z) ∀y ∈ X

Thus (i) implies (ii).

Next we prove (ii) implies (i). From (3) we have,

lim
t→0+

J̃z(
x

‖x, z‖
, z)(y, z) 6 lim

t→0+

‖x + ty, z‖ − ‖x, z‖

t

6 lim
t→0+

J̃z(
x + ty

‖x + ty, z‖
, z)(y, z), ∀y ∈ X (11)

Using (1), (11) becomes

J̃z(
x

‖x, z‖
, z)(y, z) 6 D1

+[x,z]
(y)

6 J̃z(
x

‖x, z‖
, z)(y, z)

⇒ D1
+[x,z]

(y) = J̃z(
x

‖x, z‖
, z)(y, z) ∀y ∈ X (12)

Also using (12) and bilinearity of J̃z we have,

D1
−[x,z]

(y) = −D1
+[x,z]

(−y)

= −J̃z(
x

‖x, z‖
, z)(−y, z)

= J̃z(
x

‖x, z‖
, z)(y, z)

= D1
+[x,z]

(y)
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That is D1
[x,z](y) exists for all y ∈ X and

D1
[x,z](y) = J̃z(

x

‖x, z‖
, z)(y, z) (13)

Since x ∈ X is arbitrary with ‖x, z‖ 6= 0 by the corollary 4.9, X × V (z) is smooth.

Next we claim that (i) implies (iii). We have, for x ∈ X and t 6= 0

‖x + ty, z‖2 − ‖x, z‖2

t
=

J̃z(x + ty, z)(x + ty, z) − J̃z(x, z)(x, z)

t

= (
J̃z(x + ty, z) − J̃z(x, z)

t
)(x, z) + J̃z(x + ty, z)(y, z) (14)

Assume that X × V (z) is smooth at (x, z). Then

lim
t→0

(
J̃z(x + ty, z) − J̃z(x, z)

t
)(x, z) = lim

t→0

‖x + ty, z‖2 − ‖x, z‖2

t

− lim
t→0

J̃z(x + ty, z)(y, z)

= lim
t→0

(‖x + ty, z‖ + ‖x, z‖). lim
t→0

‖x + ty, z‖ − ‖x, z‖

t
− J̃z(x, z)(y, z)

= 2‖x, z‖D1
[x,z](y) − J̃z(x, z)(y, z)

= J̃z(x, z)(y, z) from(13).

Thus (iii) holds. Conversely assume that (iii) holds. Now

2‖x, z‖D1
+[x,z](y) = lim

t→0+

‖x + ty, z‖2 − ‖x, z‖2

t

= lim
t→0

(
J̃z(x + ty, z) − J̃z(x, z)

t
)(x, z)

+ lim
t→0+

J̃z(x + ty, z)(y, z)

= J̃z(x, z)(y, z) + lim
t→0+

J̃z(x + ty, z)(y, z)

= J̃z(x, z)(y, z) + ‖x, z‖D1
+[x,z](y), using (6).

∴ ‖x, z‖D1
+[x,z](y) = J̃z(x, z)(y, z).

Also

‖x, z‖D1
−[x,z](y) = −‖x, z‖D1

+[x,z](−y)

= −J̃z(x, z)(−y, z)

= J̃z(x, z)(y, z)

= ‖x, z‖D1
+[x,z](y)

∴ ‖x, z‖D1
−[x,z](y) = ‖x, z‖D1

+[x,z](y) ∀y ∈ X.

Thus the 2-norm is Gâteaux derivative of the function x 7→ ‖x, z‖ at x, in any direction y ∈ X. Invoking

the corollary 4.9 again, we could see that X × V (z) is smooth.
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We follow the definitions of smoothness of a linear 2-normed space, as given in [11] and characterize

the smoothness in terms of normalized duality mapping on X ×V (z) and Gâteaux differentiability of the

semi norm x 7→ ‖x, z‖.

Definition 4.11. (see [11]) A linear 2-normed space (X, ‖., .‖) is said to be smooth for x 6= 0 in X and

z /∈ V (x) the 2-norm ‖., .‖ is Gâteaux differentiable at (x, z) in any direction of y.

Lemma 4.12. (cf [11]) Let (X, ‖., .‖) be a linear 2-normed space and (Xz, ‖.‖z) for fixed non zero

element z in X. Then the 2-norm is Gâteaux differentiable at (x, z) in the direction of y if the norm ‖.‖z

is Gâteaux differentiable at (x)z in any direction (y)z.

From the above lemma it follows that the 2-norm ‖., .‖ is Gâteaux differentiable at (x, z) in any

direction of y if and only if the semi norm x 7→ ‖x, z‖ is Gâteaux differentiable at x in any direction y.

Thus we have the following theorem:

Theorem 4.13. Let (X, ‖., .‖) be a linear 2-normed space. The following are equivalent:

1. X is smooth.

2. Jz(x, z) is singleton for all x, z ∈ X.

3. The semi norm x 7→ ‖x, z‖ is differentiable in any direction y ∈ X for all z /∈ V (x).
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