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Abstract In the computation fractal dimension of level sets of Rademacher series which is induced by

sequences on complex plane with general term tending to zero, the convergence of the Rademacher series

must be needed for some real number belongs to [0, 1]. In this paper, a polynomial algorithm algorithm

with the order of complexity O(n) is established to get a convergent series from such a sequence on

complex plane with each term multiplied by a random variable where all random variables are independent

identically distributed.
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1 Introduction

The Rademacher functions Rn(x)(n > 1) are defined by

Rn(x) = sgn sin(2nπx),

where sgnx = −1, 0 or 1 according to x < 0, x = 0 or x > 0. And call the series S(x) =
∑

∞

n=1 anRn(x)

the Rademacher series, which is a spacial Weisertrass-typed series. Weisertrass-typed series has a colorful

history, known as a continuous non-differentiable function as well as a classical fractal function. Consid-

ering Hausdorff dimension of the level sets[1,2,5] of such series, we need the convergence of those series.

Fortunately, a special case of a result of Kaczmarz and Steinhaus[3] shows that if {an} (n = 1, 2, . . .) is

a sequence of real numbers with
∞
∑

n=1

|ai| = +∞, and ai → 0, (H)

then the Rademacher series assumes every preassigned real value c (cardinal number of the continuum)

times for x ∈ (0, 1), i.e., Ar = {x ∈ (0, 1) : S(x) = r} has a cardinality c. However, if the real sequence
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{an} is replaced by a complex sequence {cn}, set Ar might be an empty set. So we ask naturally can we

find some real number r such that Ar is a nonempty set.

There is another motivation for this paper. It is known that a conditional convergent series can

converge to each real number if it is rearranged the summational order. When we don’t change the

summational order but make each summational term an multiplied by a random variable ξn with all

variables being independent identically distributed, can we make sure that the series
∑

∞

n=1 anξn converge

for some {ξn} ∈ {−1, 1}N, where {an} satisfies condition (H)?

Since the order of complexity for an algorithm is very important[4], to make sure that the Rademacher

series converge we would like find a polynomial algorithm. In this paper, we will establish an algorithm

by which, for any complex sequence {cn}, one can find an according x ∈ (0, 1) such that the Rademacher

series
∑

∞

n=1 cnRn(x) converges. This algorithm is a polynomial algorithm with the order of complexity

O(n).

2 Notes and lemmas

Let Σ2 be the symbolic system
∏

∞

n=1{−1, 1}, and let d be the usual metric on Σ2 defined by

d(x, y) = 2−m with m = min{n : xn 6= yn} for x 6= y, where x = (xn) and y = (yn) belong to Σ2.

This paper always assume that x, xn, yn, wn ∈ {−1, 1} and that complex number c is with form

c = (a, b) = a + ib, a, b ∈ R. In term of c ∈ C, its norm is defined by ‖c‖ = max{|a|, |b|}. For a sequence

{cn}, its norm is defined by ‖{cn}‖s = supn ‖cn‖.

Definition 2.1. Let {cn}Nn=1 be a sequence in C. Say it is of type one if ‖{cn}‖s < 1 and there is some

1 6 n < N such that either ‖cn + cn+1‖ < 1 or ‖cn − cn+1‖ < 1 and say it is of type two if ‖{cn}‖s < 1

and it is not of type one.

Lemma 2.2. Suppose S = {cn = an + ibn}5n=1 be a sequence of type two in the complex plane. Let

xn,j = (−1)tnsgn(ajaj+n−1), n = 1, 2, 3, 4,

and Cj =
∑4

n=1 xn,jcn+j−1, j = 1, 2, where

(t1, t2, t3, t4) = (0, 1, 1, 0).

Denote P (S) = {C1, c5} or {c1, C2} according to ‖C1‖ < 1 or > 1. Then ‖P (S)‖s < 1.

Proof. Here we only show ‖C2‖ < 1 when ‖C1‖ > 1. For j = 1, 2, denote

Aj =
4

∑

n=1

xn,jan+j−1, Bj =
4

∑

n=1

xn,jbn+j−1.

Then, by the type of S, we have

|Bj | =
∣

∣|bj |+ |bj+1| − |bj+2| − |bj+3|
∣

∣ < 1
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and sgn(aj)Aj = |aj | − |aj+1| − |aj+2| + |aj+3| < 1 for j = 1, 2. If |A1| > 1, then sgn(a1)A1 < −1. On

the other hand, we have

sgn(a1)A1 + sgn(a2)A2 = |a1| − 2|a3|+ |a5| > −2,

implying sgn(a2)A2 > −1 and so |A2| < 1 since A2 < 1.

Let S = {c1, c2, . . . , c5} with norm less than one. If S is of type one, denote

T (S) = min{n : {cn, cn+1} is of type one},

M(S) = {wn}
5
n=1,

P (S) = {c1, . . . , cm + wm+1cm+1, . . . , c5}, m = T (S),

where wn = 1 if n 6= T (S) + 1 and wn = −1 or 1 according to ‖cn + cn+1‖ > 1 or < 1 if n = T (S) + 1. If

S is of type two, denote

M(S) =







{x1,1, x2,1, x3,1, x4,1, 1}, ifP (S) = {C1, s5};

{1, x1,2, x2,2, x3,2, x4,2}, ifP (S) = {s1, C2},

where xn,i and Cj are given by Lemma 2.2. For stating our idea clearly, we give an example as follow:

Example 2.3. Let Si = {ci
n}

5
n=1, i = 1, 2 be defined by

S1 = {.5 + .7i,−.6 + .4i, .7 + .9i, .92 + .83i, .1 + .4i},

S2 = {.02− .6i, .99 + .5i, .99− .7i,−.03− .8i, .98− .7i}.

Then S1 is of type one while S2 is of type two, and

M(S1) = {1, 1, 1,−1, 1}, P (S1) = {c1
1, c

1
2, c

1
3 − c1

4, c
1
5},

M(S2) = {1, 1,−1, 1, 1}, P (S2) = {c2
1, c

2
2 − c2

3 + c2
4 + c2

5}.

3 Main results

Theorem 3.1. Let {cn}Nn=1 be a sequence in C with norm less than one. Then there exists another

sequence {xn}Nn=1 such that for any integer number 1 6 n 6 N , we have

∥

∥

∥

n
∑

j=1

xjcj

∥

∥

∥

< 5. (3.1)

Proof. If N 6 4, then {xn = 1}Nn=1 is a desired sequence. So we will show the conclusion is true when

N > 4.

Let S = {sn}5n=1 be the first five terms of {cn} and λ0 = 5. Denote {w0
n}

5
n=1 = M(S) and

λ1 = min{λ0 + 1, N}, {c1
n}

4
n=1 = P (S) if S is of type one or λ1 = min{λ0 + 3, N}, {c1

n}
2
n=1 = P (S) if S

is of type two. Suppose that {wk−1
n }5n=1, {c

k
n}

nk

n=1 and λk are given. Let S = {sn}5n=1 be the first five

terms of the following sequence

{ck
1 , . . . , c

k
nk

, cλk+1, cλk+2, . . . , cN}. (3.2)
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Put {wk
n}

5
n=1 = M(S) and λk+1 = min{λk + 1, N}, {ck+1

n }4n=1 = P (S) if S is of type one or λk+1 =

min{λk + 3, N}, {ck+1
n }2n=1 = P (S) if S is of type two.

This definition process would be stopped if the number of terms of sequence (3.2) (denoted by Nk) is

no more than four for some k and must be stopped for some k since {N0 = N, N1, . . . , Nk} is a decreasing

sequence and N < +∞.

Now we assume k is the desired number, that’s Nk < 5 and Nk−1 > 5, while λk = N . Denote

the sequence defined in (3.2) by {ck
n}

Nk

n=1 and let wk
n = 1 for 1 6 n 6 Nk. Fixed 1 6 n 6 N , we will

define the coefficient xn of cn. If n > λk−1, let xn = 1. Now we consider the case n 6 λk−1. From

the definition of ci
j , j 6 ni, we know there are two integer number m1 = m1(j, i), m2 = m2(j, i) and

wm1
, wm1+1, . . . , wm2

∈ {−1, 1} such that

ci
j =

m2
∑

l=m1

wlcl.

Denote Γi
j = {l : m1(j, i) 6 l 6 m2(j, i)}, where j 6 ni. Let

i0 := i0(n) = min{i : n ∈ Γi
j for some j}.

By the definitions of Γi
j ’s and ci

j ’s, there is a sequence {ki}ki=i0
such that n ∈ ∩k

i=i0
Γi

ki
. Let xn =

∏k

i=i0
wi

ki
.

From the following two facts that wi
1 = 1 for any 1 6 i 6 k by the construction of wi

1 and

∥

∥

∥

n
∑

j=1

xjcj

∥

∥

∥
6

ni0
∑

j=1

‖ci0
j ‖+

n
∑

j=λi0−1

‖xjcj‖ < 5.

such a sequence {xn}Nn=1 can make the result to be true.

Theorem 3.2. Let S = {cn} be a sequence in C with cn → 0. Then there is an x = (xn) ∈ Σ2 such that

∥

∥

∥

∞
∑

n=1

xncn

∥

∥

∥
< 10‖{cn}‖s.

Proof. Denote s= ‖{cn}‖s. There is an increasing integer sequence {N0 = 0, N1, . . .} such that ‖cn‖ <

2−ks for Nk < n 6 Nk+1. For each k > 1, let {xn}
Nk

n=Nk−1+1 be given by Theorem 3.1 for the sequence

{2ks−1cn}
Nk

n=Nk−1+1. Fix 0 < ε < 1, set k0 = min{k : 2−ks < ε}. Letting n > Nk0
and 0 6 p ∈ Z, there

are two integers k1, k2 with k0 6 k1 6 k2, Nk1
< n 6 Nk1+1 and Nk2

< n + p 6 Nk2+1. Thus

∥

∥

∥

n+p
∑

i=n

xici

∥

∥

∥
=

∥

∥

∥

Nk2
∑

i=Nk1
+1

xici +

n+p
∑

i=Nk2
+1

xici −
n−1
∑

i=Nk1
+1

xici

∥

∥

∥

< 10 · 2−k0s + 5 · 2−k0s + 5 · 2−k0s < 20ε,

implying that
∑

n>1 xncn converges. Using Lemma 3.1 again,

∥

∥

∥

∞
∑

n=1

xncn

∥

∥

∥
6

∞
∑

k=0

∥

∥

∥

Nk+1
∑

n=Nk+1

xncn

∥

∥

∥
<

∞
∑

k=0

5 · 2−ks = 10s,

so we can end the proof here.
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4 The algorithm

Now, we give the algorithm by Theorem 3.1. Recall that {cn}Nn=1 is a sequence of complex numbers.

Step 1. Let {xn = 1}Nn=1. If N 6 4, goto Step 7.

Step 2. Initializing. Let i = 0, λi = 5 and S = {sk = ck}5k=1 = {(ak, bk)}5k=1. Let Λk = {k},

1 6 k 6 5.

Step 3. If Λ5 = ∅, goto Step 7. If S is of type two turn to Step 4. Let λi+1 ← min{λi + 1, N}.

Denote

m = min{k : ‖sk + sk+1‖ < 1 or ‖sk − sk+1‖ < 1},

f lag =







1, ‖sm + sm+1‖ < 1,

−1, otherwise.

If flag = −1, set xn ← −xn for each n ∈ Λm and put

Λm ← Λm

⋃

Λm+1,

Λm+k ← Λm+k+1, 1 6 k 6 4−m,

Λ5 ←







{λi+1}, λi+1 > λi

∅, λi+1 = λi.

sk ←































sk, k < m;

sk + flag · sk; k = m;

sk+1, m < k < 5;

cλi+1
, k = 5.

Goto Step 6.

Step 4. Let λi+1 ← min{λi + 3, N}. Define

t = s1 − sgn(a1a2)s2 − sgn(a1a3)s3 + sgn(a1a4)s4.

If ‖t‖ > 1, goto Step 5. Let w2 = −sgn(a1a2), w3 = −sgn(a1a3), w4 = sgn(a1a4) and let xn ← xnwk if

n ∈ Λk, k = 2, 3, 4. Let

Λk ←



















Λ5, k = 2;

{λi + k − 2}, 2 < k 6 λi+1 − λi + 2;

∅, λi+1 − λi < k 6 5.

sk ←































t, k = 1;

s5, k = 2;

cλi+k−2, 2 < k 6 λi+1 − λi + 2;

cN , λi+1 − λi + 2 < k 6 5.
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Step 5. Let w3 = −sgn(a2a3), w4 = −sgn(a2a4), w5 = sgn(a2a5) and let xn ← xnwk if n ∈ Λk,

k = 3, 4, 5. Let

Λk ←



















∪5
m=2Λm, k = 2;

{λi + k − 2}, 2 < k 6 λi+1 − λi + 2;

∅, λi+1 − λi < k 6 5.

sk ←



















s2 +
∑5

m=3 wmsm, k = 2;

cλi+k−2, 2 < k 6 λi+1 − λi + 2;

cN , λi+1 − λi + 2 < k 6 5.

Step 6. Let i← i + 1. Goto Step 3.

Step 7. Output {xn} and end.

5 Conclusion

The algorithm introduced in above section is a polynomial algorithm, of which the order of complexity

is O(N) for a complex sequence {cn}Nn=1.
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