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Abstract For a connected graph G = (V, E), a connected hull set of a graph G is a hull set S such

that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected hull set of G

is the connected hull number of G and is denoted by hc(G). Connected graphs of order p with connected

hull number 2 or p are characterized. It is shown that for any positive integers 2 6 a < b 6 c, there exists

a connected graph G such that h(G) = a and hc(G) = b and g(G) = c where g(G) is a geodetic number

of a graph. A subset T ⊆ S is called a forcing subset for S if S is the unique minimum connected hull

set containing T . A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The

forcing connected hull number of S, denoted by fhc(S), is the cardinality of a minimum forcing subset

of S. The forcing connected hull number of G, denoted by fhc(G), is fhc(G) = min{fhc(S)}, where the

minimum is taken over all minimum connected hull sets S in G. It is shown that for every pair a, b of

integers with a > 0 and b > 2a+2, there exists a connected graph G such that fhc(G) = a and hc(G) = b.
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1 Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple

edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic termi-

nology, we refer to Harary [1,7]. A convexity on a finite set V is a family C of subsets of V , convex

sets which is closed under intersection and which contains both V and the empty set. The pair (V, E)

is called a convexity space. A finite graph convexity space is a pair (V, E), formed by a finite connected

graph G = (V, E) and a convexity C on V such that (V, E) is a convexity space satisfying that every

member of C induces a connected subgraph of G. Thus, classical convexity can be extended to graphs in

a natural way. We know that a set X of Rn is convex if every segment joining two points of X is entirely

contained in it. Similarly a vertex set W of a finite connected graph is said to be convex set of G if it

contains all the vertices lying in a certain kind of path connecting vertices of W [8]. The distance d(u, v)

between two vertices u and v in a connected graph G is the length of a shortest u − v path in G. An

u − v path of length d(u, v) is called an u − v geodesic. A vertex x is said to lie on a u − v geodesic P
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if x is a vertex of P including the vertices u and v.For two vertices u and v, let I[u, v] denotes the set

of all vertices which lie on u − v geodesic. For a set S of vertices, let I[S] =
⋃

u,v∈S I[u, v]. The set S is

convex if I[S] = S. Clearly if S = {v}or S = V , then S is convex. The convexity number, denoted by

C(G), is the cardinality of a maximum proper convex subset of V . The smallest convex set containing S

is denoted by Ih(S) and called the convex hull of S. Since the intersection of two convex sets is convex,

the convex hull is well defined. Note that S ⊆ I[S] ⊆ Ih(S) ⊆ V . A subset S ⊆ V is called a geodetic

set if I[S] = V and a hull set if Ih(S) = V . The geodetic number g(G) of G is the minimum order of

its geodetic sets and any geodetic set of order g(G) is a minimum geodetic set or simply a g- set of G.

Similarly, the hull number h(G) of G is the minimum order of its hull sets and any hull set of order h(G)

is a minimum hull set or simply a h- set of G. The geodetic number of a graph is studied in [1,2,3,5,9,10]

and the hull number of a graph is studied in [1,4,6,10]. For the graph G given in Figure 1.1, S = {v1, v7}

is a h- set of G so that h(G) = 2 and also S1 = {v1, v6, v7}is a g-set of G so that g(G) = 3. A vertex v

is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. Throughout the

following G denotes a connected graph with at least two vertices.

The following theorems are used in the sequel.

Theorem 1.1. [2, 5] Each extreme vertex of a connected graph G belongs to every hull set(geodetic set)

of G.

Theorem 1.2. [2] For a connected graph G, h(G) = p if and only if G = Kp.

Theorem 1.3. [5] The geodetic number of a tree T is the number of end-vertices in T
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2 The Connected Hull Number of a Graph

Definition 2.1. A set S ⊆ G is called a connected hull set of a graph G if S is a hull set such that the

subgraph G[S] induced by S is connected. The minimum cardinality of a connected hull set of G is the

connected hull number of G and is denoted by hc(G). A connected hull set of cardinality hc(G) is called

a hc-set of G or a minimum connected hull set of G.

Example 2.2. For the graph G given in Figure 2.1. S = {v1, v4, v7}is the minimum hull set of G and so

h(G) = 3. Here the induced subgraph G[S] is not connected,so that S is not a connected hull set of G.

Now, it is clear that S1 = {v1, v2, v3, v4, v7} is a minimum connected hull set of G and so hc(G) = 5.
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Theorem 2.3. Every extreme vertex of a connected graph G belongs to every connected hull set of G.

In particular, every end-vertex of G belongs to every connected hull set of G.

Proof. Since every connected hull set is also a hull set, the result follows from Theorem 1.1.

Corollary 2.4. For the complete graph Kp(p > 2), hc(Kp) = p.

Theorem 2.5. Let G be a connected graph with cut-vertices and let S be a connected hull set of G. If v

is a cut-vertex of G, then every component of G − v contains an element of S.

Proof. Suppose that there is a component B of G at a cut-vertex v such that B contains no vertex

of S. Let u ∈ V (B). Since S is a connected hull set, there exists a pair of vertices x and y in S

such that u lies on Ik [x, y] in G, (k > 1).Let us assume that u lies on z − w geodesic in Ik [x, y].Now

P : x = u0, u1, ..., ul = z, ...u, ..., um = w, ..., un = y is a path in G. Since v is a cut-vertex of G, the x− u

subpath of P and the u − y subpath of P both contain v, it follows that P is not a path, contrary to

assumption.
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Corollary 2.6. Let G be a connected graph with cut-vertices and let S be a connected hull set of G. Then

every branch of G contains an element of S.

Theorem 2.7. Every cut-vertex of a connected graph G belongs to every connected hull set of G.

Proof. Let v be any cut-vertex of G and let G1, G2, ..., Gr(r > 2) be the components of G − {v}. Let

S be any connected hull set of G. Then by Theorem 2.5,S contains at least one element from each

Gi(1 6 i 6 r). Since G[S] is connected, it follows that v ∈ S.

Corollary 2.8. For a connected graph G with k extreme vertices and l cut-vertices,hc(G) > max {2, k + l}.

Proof. This follows from Theorems 2.3 and 2.7.

Corollary 2.9. For any non-trivial tree T of order p, hc(T ) = p.

Proof. This follows from Corollary 2.8.

Theorem 2.10. For a connected graph G of order p, 2 6 h(G) 6 hc(G) 6 p.

Proof. Any hull set needs at least two vertices and so h(G) > 2. Since every connected hull set is also a

hull set, it follows that h(G) 6 hc(G). Also, since V [G] induces a connected hull set of G, it is clear that

hc(G) 6 p.

Remark 2.11. The bounds in Theorem 2.10 are sharp. For any non-trivial path P, h(P ) = 2. For the

complete graph Kp, h(Kp) = hc(Kp). By Corollary 2.1, For any non-trivial tree T, hc(T ) = p . Also, all

the inequalities in the theorem are strict. For the graph G given in Figure 2.1, h(G) = 3, hc(G) = 5 and

p = 7 so that 2 < h(G) < hc(G) < p.

Corollary 2.12. Let G be any connected graph. If hc(G) = 2, then h(G) = 2.

The following Theorems 2.13 and 2.14 characterize graphs for which hc(G) = 2 and hc(G) = p

respectively.

Theorem 2.13. Let G be a connected graph of order p > 2. Then G = K2 if and only if hc(G) = 2.

Proof. If G = K2, then hc(G) = 2. Conversely, let hc(G) = 2. Let S = {u, v} be a minimum connected

hull set of G. Then uv is an edge. If G 6= K2, then there exists a vertex w different from u and v. Thus

w cannot lie on any Ik[u, v](k > 1) so that S is not a hc-set, which is a contradiction. Thus G = K2.

Theorem 2.14. Let G be a connected graph. Then every vertex of G is either a cut-vertex or an extreme

vertex if and only if hc(G) = p.

Proof. Let G be a connected graph with every vertex of G either a cut-vertex or an extreme vertex.

Then the result follows from Theorem 2.3 and Theorem 2.7.Conversely, suppose hc(G) = p. Suppose that

there is a vertex x in G which is neither a cut-vertex nor an extreme vertex. Since x is not an extreme

vertex, N(x) does not induce a complete subgraph.Let S = V − {x}.Then Ik [S] = V and so S is a hull

set of G. Clearly, x lies on Ik [S]. Also, since x is not a cut-vertex of G, < G − x > is connected. Thus

V − {x} is a connected hull set of G and so hc(G) 6 |V − {x}| = p − 1, which is a contradiction.
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We leave the following problem as an open question.

Problem 2.15. Characterize graphs G for which hc(G) = h(G).

We denote the vertex connectivity of a connected graph G by κ(G) or κ.

Theorem 2.16. If G is a non-complete connected graph such that it has a minimum cutset, then hc(G) 6

p − κ(G) + 1.

Proof. Since G is non-complete, it is clear that 1 6 κ(G) 6 p − 2. Let U = {u1, u2, . . . , uκ} be a

minimum cutset of G. Let G1, G2, · · · , Gr(r > 2)be the components of G − U and let S = V (G) − U .

Then every vertex ui(1 6 i 6 κ) is adjacent to at least one vertex of Gj for every j(1 6 j 6 r). It is clear

that S is a hull set of G and G[S] is not connected. Also, it is clear that G[S ∪ {x}] is a connected hull

set for any vertex x in U so that hc(G) 6 p − κ(G) + 1.

Remark 2.17. The bound in Theorem 2.16 is sharp. For the cycle G = C4, hc(G) = 3. Also, κ(G) =

2, p− κ(G) + 1 = 3. Thus hc(G) = p − κ(G) + 1.

In view of Theorem 2.10, we have the following realization result.

Theorem 2.18. For any three positive integers a, b, c with 2 6 a < b < c there exists a connected graph

G such that h(G) = a, hc(G) = b and g(G) = c.

Proof. Case 1. Suppose a = 2; b < c. Let Pb : v1, v2, ..., vb be a path of length b − 1. Add 2c − 4 new

vertices w1, w2, ..., wc−2, u1, u2, ..., uc−2 to Pb and join each wi(1 6 i 6 c − 2) with v1 and v3 and join

each ui(1 6 i 6 c − 2) with v2 and each wi(1 6 i 6 c − 2) there by producing the graph G of Figure

2.2. First we prove that h(G) = a. Let S = {v1, vb}. Then S is a hull set of G so that h(G) = 2. Let

S1 = {v3, v4, ..., vb} be the set of all cut vertices and end vertices of G. By Theorems 2.3 and 2.7, each

connected hull set contains S1. It is clear that S1 is not a connected hull set of G. It is easily verified

that S1 ∪ {x} where x /∈ S1 is not a connected hull set of G so that hc(G) > b. However S1 ∪ {v1, v2}

is a connected hull set of G so that hc(G) = b. Next we show that g(G) = c. By Theorem 1.1 every

geodetic set of G contains vb. It is easily observed that every geodetic set contain each ui(1 6 i 6 c− 2).

Let S2 = {vb, u1, u2, ..., uc−2}. It is clear that S2 is not a geodetic set of G and so g(G) > c. However

S2 ∪ {v1} is a geodetic set of G so that g(G) = c.

Case 2. Let 2 6 a < b < c. Let Pb−a+2 : v1, v2, ..., vb−a+2 be a path of length b−a+1. Add 2c−a−1

new vertices w1, w2, ..., wc−a, u1, u2, ..., uc−a, z1, z2, ..., za−1 to Pb−a+1 and join each zi(1 6 i 6 a−1) with

vb−a+2 and join each wi(1 6 i 6 c − a) with v1 and v3 and join each ui(1 6 i 6 c − a) with v2 and

each wi(1 6 i 6 c − a) there by producing the graph G of Figure 2.3. First we prove that h(G) = a.

Let S = {z1, z2, ..., za−1} be the set of all extreme vertices of G. By Theorem 1.1, every hull set of G

contains S. It is clear that S is not a hull set of G and so h(G) > a .But S ∪ {v1} is a hull set of G so

that h(G) = a.Next we show that hc(G) = b. Let S1 = S ∪ {v3, v4, ..., vb−a+1} be the set of all extreme

vertices and cut vertices of G. By Theorems 2.3 and 2.7, each connected hull set contains S1. It is clear

that S1 is not a connected hull set of G. It is easily verified that S1∪{x} where x /∈ S1 is not a connected

512



South Asian J. Math. Vol. 2 No. 5

hull set of G so that hc(G) > b.However S1 ∪{v1, v2} is a connected hull set of G sothat hc(G) = b. Next

we show that g(G) = c. By Theorem 1.1 every geodetic set of G contains S. It is easily observed that

every geodetic set contain each ui(1 6 i 6 c − a). Let S2 = S ∪ {u1, u2, ..., uc−a}. It is clear that S2 is

not a geodetic set of G and so g(G) > c. However S2 ∪ {v1} is a geodetic set of G so that g(G) = c.
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3 The Forcing Connected Hull Number of a Graph

Definition 3.1. Let G be a connected graph and S a hc-set of G. A subset T ⊆ S is called a forcing

subset for S if S is the unique hc-set containing T . A forcing subset for S of minimum cardinality
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is a minimum forcing subset of S. The forcing connected hull number of S, denoted by fhc(S), is the

cardinality of a minimum forcing subset of S. The forcing connected hull number of G, denoted by fhc(G),

is fhc(G) = min {fhc(S)}, where the minimum is taken over all hc-sets S in G.

Example 3.2. For the complete bipartrite graph G = K2,3 with bipartite sets X = {x1, x2} and

Y = {y1, y2, y3} ,the sets S1 = {x1, x2, y1} , S2 = {x1, x2, y2} , S3 = {x1, x2, y3} , S4 = {x1, y2, y1} , S5 =

{x2, y2, y1} , S6 = {x1, y2, y3} , S7 = {x2, y2, y3} , S8 = {x1, y1, y3} and S9 = {x2, y1, y3} are the hc-sets of

G such that fc(S1) = fc(S2) = fc(S3) = fc(S4) = fc(S5) = fc(S6) = fc(S7) = fc(S8) = fc(S9) = 3. Thus

fc(G) = 3.

The next theorem follows immediately from the definition of the connected hull number and the

forcing connected hull number of a connected graph G.

Theorem 3.3. For any connected graph G, 0 6 fhc(G) 6 hc(G) 6 p.

Remark 3.4. The bounds in Theorem 3.3 are sharp.For any non-trivial tree T , by Corollary 2.9,

the set of all vertices is the unique hc-set of G. It follows that fhc(T ) = 0 and hc(T ) = p. For

the complete bipartrite graph G = K2,3 with bipartite sets X = {x1, x2} and Y = {y1, y2, y3}, the

sets S1 = {x1, x2, y1} , S2 = {x1, x2, y2} , S3 = {x1, x2, y3} , S4 = {x1, y2, y1} , S5 = {x2, y2, y1} , S6 =

{x1, y2, y3} , S7 = {x2, y2, y3} , S8 = {x1, y1, y3} and S9 = {x2, y1, y3} are the hc-sets of G so that

hc(G) = 3.Also,it is easily seen that fhc(G) = 3. Thus fhc(G) = hc(G). Also, the inequality in

the theorem can be strict. For the graph G given in Figure 2.1,the sets S1 = {v1, v2, v3, v4, v7} , S2 =

{v1, v2, v4, v5, v7} , S3 = {v1, v2, v5, v6, v7} , S4 = {v1, v2, v3, v6, v7} are the hc-sets of G so that hc(G) =

5.Also fhc(S1) = fhc(S2) = fhc(S3) = fhc(S4) = 2 so that fhc(G) = 2. Thus 0 < fhc(G) < hc(G) < p.

Definition 3.5. A vertex v of a connected graph G is said to be a connected hull vertex of G if v belongs

to every hc-set of G.

Example 3.6. For the graph G given in Figure 2.1, S1 = {v1, v2, v3, v4, v7} , S2 = {v1, v2, v4, v5, v7} , S3 =

{v1, v2, v5, v6, v7} and S4 = {v1, v2, v3, v6, v7} are the only four hc-sets of G. It is clear that v1, v2and v7

are the connected hull vertices of G.

The proof of the following theorems and corollary are straight forward, therefore we omit it.

Theorem 3.7. Let G be a connected graph. Then

a) fhc(G) = 0 if and only if G has a unique hc-set.

b) fhc(G) = 1 if and only if G has at least two hc-sets, one of which is a unique hc-set containing one of

its elements.

c) fhc(G) = hc(G) if and only if no connected hc-set of G is the unique hc-set containing any of its proper

subsets.

Theorem 3.8. Let G be a connected graph and let ℑ be the set of relative complements of the minimum

forcing subsets in their respective connected hc-sets in G. Then
⋂

F∈ℑ
is the set of all connected hull

vertices of G.
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Corollary 3.9. Let G be a connected graph and S a hc-set of G. Then no connected hull vertex of G

belongs to any minimum forcing subset of S.

Theorem 3.10. Let G be a connected graph and W be the set of all connected hull vertices of G. Then

fhc(G) 6 hc(G) − |W |.

Proof. Let S be any hc-set of G.Then hc(G) = |S| , W ⊆ S and W is the unique hc-set containing S−W .

Thus fhc(G) 6 |S − W | = |S| − |W | = hc(G) − |W |.

Corollary 3.11. If G is a connected graph with k extreme vertices and l cut-vertices, then fhc(G) 6

hc(G) − (k + l).

Proof. This follows from Theorems 1.1 and 2.7.

Remark 3.12. The bound in Theorem 3.10 is sharp. For the graph G given in Figure 2.1 S1 =

{v1, v2, v3, v4, v7} , S2 = {v1, v2, v4, v5, v7} , S3 = {v1, v2, v5, v6, v7} and S4 = {v1, v2, v3, v6, v7} are the

only four hc-sets so that hc(G) = 5.Also, it is easily seen that fhc(G) = 2 and W = {v1, v2, v7} is the set

of connected hull vertices of G. Thus fhc(G) = hc(G) − |W |.

Theorem 3.13. If G is a connected graph with hc(G) = 2, then fhc(G) = 0.

Proof. If hc(G) = 2, then by Theorem 2.13, G = K2. By Theorem 3.7(a), fhc(G) = 0.

Theorem 3.14. For every pair a, b of integers with a > 0, b > 2a + 2, there exists a connected graph G

such that fhc(G) = a and hc(G) = b.

Proof. We consider two cases

Case 1. Suppose a = 0. Let G = Kb. Then by Corollary 2.4, hc(G) = b and by Theorem 3.7(a),

fhc(G) = 0.

Case 2. Suppose a > 1. Then b > 4. Let Pi : ei, fi, li, ci, ei(1 6 i 6 a) be a copy of cycle C4.Let Qi

be the graph obtained from Pi by adding a new vertex pi and the edge pili, pifi and pici(1 6 i 6 a).

The graph Wa is obtained from Qi’s by identifying ei of Qi and li−1 of Qi−1(2 6 i 6 a + 1).Let G

be the graph given in Figure 3. 1 is obtained from Wa by adding new vertices x, z1, z2, ..., zb−2a−2

and joining the edges laz1, laz2, ..., lazb−2a−2 and e1x. Now we prove that hc(G) = b. Let Z =

{x, z1, z2, ..., zb−2a−2, e1, l1, l2, ..., la} be the set of end vertices and cut vertices of G. Then by Theo-

rems 2.3, every connected hull set of G contains Z. Now Z is a hull set. However G[Z] is not con-

nected.Therefore Z is not a connected hull set of G . Let Hi = {fi, ci} (1 6 i 6 a). It is easily observed

that every connected hull set contains atleast one vertex from each Hi(1 6 i 6 a) so that hc(G) > b. Now

S = Z ∪ {f1, f2, ..., fa} is a connected hull set of G so that hc(G) = b . Next, we show that fhc(G) = a.

Since every hc-set contains Z it follows from Theorem 3.10, that fhc(G) 6 hc(G) − |Z| = a. Now since

hc(G) = b and every minimum connected hull set of G contains Z, it is easily seen that every minium

connected hullset S is of the form Z ∪ {v1, v2, ..., va},where vi ∈ Hi(1 6 i 6 a). Let T be any proper

subset of S with |T | < a.Then there is a vertex uj(1 6 i 6 a) such that uj /∈ T . Let wj be a vertex of Hj

distinct from uj , then S1 = S ∪ [S − {uj}] ∪ {wj} is a hc-set properly containing T . Thus S is not the
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unique hc-set containing T . Thus T is not a forcing subset of S. This is true for all minimum connected

hull sets of G and so it follows that fhc(G) = a.
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