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1 Introduction

Menger [4] was introduce a number of generalizations of metric space. One such generalization
is Menger space. It is a probabilistic generalization in which we assign to any two points z and y, a
distribution function F},. a generalization of Banach Contraction Principle on a complete Menger space
which is fixed-point theory in Menger space. [Sehgal and Bharucha-Reid 9] Jungck and Rhoades [3]
termed a pair of self maps to be coincidentally commuting or equivalently weakly compatible if they
commute at their coincidence points. Sessa [10] initiated the tradition of improving commutativity in
fixed-point theorems by introducing the notion of weak commuting maps in metric spaces. Jungck [2]
soon enlarged this concept to compatible maps. The notion of compatible mapping in a Menger space has
been introduced by Mishra [5]. Cho, Sharma and Sahu [1] introduced the concept of semi-compatibility in
a d-complete topological space. Popa [7] proved interesting fixed point results using implicit real functions
and semi-compatibility in d-complete topological space. In the sequel, Pathak and Verma [6] proved a
common fixed point theorem in Menger space using compatibility and weak compatibility. In this paper
a fixed point theorem for five self maps has been proved using the concept of semi-compatible maps and

weak compatible maps.

2 Preliminaries

Definition 2.1. A triangular norm * (shortly t-norm) is a binary operation on the unit interval [0, 1]

such that for all a,b,c,d € [0,1] the following conditions are satisfied:
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(1) ax1=aq;

(2) axb=b=xaq;

(3) axb < cx*d whenever a < ¢ and b < d;
(4) ax (bxc) = (ax*xb)xc.

Examples of t-norms are a *x b = max{a+b— 1,0} and a * b = min{a,b}.

Definition 2.2.([8]) A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a
non empty set X and a function F : X x X — L, where L is the collection of all distribution functions
and the value of F at (u,v) € X x X 1is represented by F, .. The function F,, assumed to satisfy the
following conditions:

(PM-1) Fyy(x) =1, for all x > 0, if and only if u = v;

(PM-2) Fyp(0) = 0; (PM-3) Fupy = Fy

(PM-4) If Fyp(x) =1 and Fy(y) = 1 then Fy(x +vy) = 1,Vu,v,w € X and z,y > 0.

Definition 2.3.([8]) A Menger space is a triplet (X, F,t) where (X, F) is a PM-space and * is a t-norm
such that the inequality.
(PM-5) Fyw(x +y) > Fyu(x) * Fyuw(y), for all u,v,w e X, z,y > 0.

Definition 2.4. A mapping F : R — RT is called a distribution if it is non-decreasing left continuous
with inf{F(t)|t € R} = 0 and sup{F(t)|t € R} = 1. We shall denote by L the set of all distribution

Sfunctions while H will always denote the specific distribution function defined by

0 ift<0,
H(x) =
1 ift=0

Proposition 2.1.([9]) Let (X,d) be a metric space. Then the metric d induces a distribution function
F defined by Fpy(t) = H(t — d(z,y)) for all z,y € X and t > 0. If t-norm * is a * b = min{a, b} for all
a,b € [0,1] then (X, F,*) is a Menger space. Further, (X, F,x) is a complete Menger space if (X,d) is

complete.

Definition 2.5.([5]) (a). Let (X, F,*) be a Menger space and * be a continuous t-norm. (a) A sequence
{zn} in X is said to be

(i) Converge to a point x in S (written x,, — x) iff for every e > 0 and X € (0,1), there exists an
integer ng = no(e, A) such that Fy, .(g) >1— X for all n > ng

(11) Cauchy if for every ¢ > 0 and A € (0,1), there exists an integer ng = ng(e,\) such that
F,

Tn,Tntp

(e) >1— X foralln > ng and p > 0.

(iii) A Menger space in which every Cauchy sequence is convergent is said to be complete.

Definition 2.6. Self mappings A and S of a Menger space (X, F,t) are said to be (i). Weak compatible if
they commute at their coincidence points i.e. Az = Sx for v € X implies ASx = SAx. (ii). Compatible
if Fasen,sazn(x) — 1 for all x > 0, whenever x,, is a sequence in X such that Ax,, Sx, — u for some

win X, as n — oo. (iii). semi-compatible if Fasy su(xz) — 1 for all x > 0, whenever x, is a sequence in
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X such that Axzy, Sz, — u, for some uin X, as n — oco. Now, we give an example of pair of self maps
(S, T) which is semi-compatible but not compatible. Further we observe here that the pair (T,S) is not

semi-compatible though (S,T) is semi-compatible.

Lemma 2.1.([11]) Let {z,} be a sequence in a Menger space (X, F,*) with continuous t-norm % and
txt > t. If there exists a constant k € (0,1) such that Fxp, xpy1(kt) > Fap,,x,(t) for all t > 0 and
n=1,2,3---, then {x,} is a Cauchy sequence in X.

3 Main Result

Theorem 3.1. Let A, B,S,T, P and Q be self maps of a complete Menger space (X, F,x) with t xt >t
satisfying:

(a) P(x)VST(x),Q(x), YAB(X);

(b) AB = BA,ST = TS, PB = BL,QT = TQ:

(c) Either Por AB is continuous;

(d) (P, AB) is semi-compatible and (Q, ST) is weak compatible;

(e) there exists a constant q € (0,1) such that M py gy (qt) = Mapx,s7y,)(t) ¥ M(py ABz)(t) *
Mqy,s1y,)(t) ¥ M(pg s7y)(t) A, B, S, T, P and Q have a unique common fized point in X .

Proof. Let zp € X. From (a) there exist z1,29 € X such that Pzy = STz and Qzq = ABuxs.
Inductively, we can construct sequences {z,} and {y,} in X such that Pz2, o = ST22,-1 = y2,—1 and
Qxop—1 = ABxoy, = yo, forn=1,2,3,---.

Step 1. Put & = 29, and y = xa,41 in (e), we get

2 M(AB22,8,Tw2031)) () * M(Pryn, ABz2,)) (0 * M(Quz i1, 5T w20 11) () ¥ M(Pasp,5, T2 1) (1)
2 M(yznyzn+1)(t) * My2n+1y2n)(t)M(yzn+2yzn+1)(t) * My, 1ysn) (1)

> M )(E) * M,
We have My, . 1yo..0)(qt) = My, yon.0)(t). Similarly , My, oo 5(qt) = My, .\ 1ys,.0)(t). Thus, we

M(sznQ12n+1) (qt)

Y2nY2n+1 2n+1y2n+2)(t)'

have
My2n+2yzn+3)(qt) > M(ynyn+1)(t)

forn=1,2,3---. M, ,  (t) = My, 4. t/0) > M(Yn—2,yn—1,t/4*) > M (Yn—2,Yyn—1,t/q") and hence
M (Yn, Ynt1,t) — 1 as n — oo for any ¢ > 0. For each s > 0 and ¢t > 1 — € for all n > ng. we can choose
no € N such that Myn,yny1(t) > 1 —¢ for all n > ng. For m,n € N, we suppose m > n. Then
we have M (yn, Ym)(t) Z M (yn, yn+1)(t/m — 1) % M (Ynt1, Ynv2)(t/m —n) 5 -5 M (Ym—1, ym)(t/m — 1)
>(1—e)x(1—¢e)*---*(1—¢) (m—mn times) > (1 —¢) and hence {y,} is a Cauchy sequence in X. Since
(X, M, *) is complete, {y,} converges to some point z € X. Also its subsequences converges to the same
point ie. z € X, ie., {Quani1} — 2z and STxoyy1 — 2 {Pxa,} — 2z and {ABxao,} — 2.

Case I. Suppose AB is continuous. Since AB is continuous, we have (AB)%w2, — ABz and
ABPuzy, — ABz. As (P, AB) is compatible pair of type (|3), we have M (P Pz, (AB)(AB)xa,,t) =1,
for all t > 0 or, M (PPxs,,, ABz,t) = 1. Therefore, PPxs, — ABz.

Step 2. Put x = ABxs, and y = xo,41 in (e), we get M (PABxay,, Qrani1, qt) = M(ABABxzay,, STxon11,
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)« M(PABxo,, ABABxo,, t)x M (Qxant1, STxon41,t)* M (PABxa,, STxont1,t). Taking n — 0o, we get
M(ABz,z,qt) > M(ABz,z,t)*M(ABz, A)Bz,t*M (2, z,t)* M(ABz, z,t) > M(ABz,z,t) x M(ABz, z,t)
i.e. M(ABz,z,qt) > M(ABz, z,t). Therefore, we get

ABz = z. (3)

Step 3. Put z = z and y = 22,41 in (e), we have My_Qq,,,,(qt) > MAB.ST x5, 1)(t) * Mp. ap.(t)
*MQuoi1,STwonsr () * Mpz sty (t). Taking n — co and using equation (1), we get M(Pz,z,)(qt) >
M(z,2,)(t)« M(Pz,z,)(t) * M(z,2,)(t) « M(Pz,z,)(t) > M(Pz,z)(t)M(Pz,z,)(t) i.e. M(Pz,z,)(qt) >
M(Pz,z).(t) we get, Pz = z. Therefore, ABz = Pz = z.
Step 4. Putting * = Bzandy = xo,4+1, we get M
*M(PBz, ABBz,)(qt)) *M (Qxan+1, STx2n+t1, )(qt) *M
so we have P(Bz) = B(Pz) = Bz and (AB)(Bz) = (BA)(Bz) = B(ABz) = Bz Taking n — oo and using
(1), we get M(Bz,z,)(qt) > M(Bz,z,)(t)« M(Bz,Bz,)(t) * M(z, z,)(t) * M(Bz, Bz, )(t) « M(Bz, z,)(t)
> M(Bz,z,)(t)*M(Bz,z,)(t)i.e M(Bz,z,)(qt) > M(Bz,z, )(t) we get Bz = z and also we have ABz = z
VAz = z Therefore, Az = Bz = Pz = z.

Step 5. As P(X)VST(X), there exists u € X such that z = Pz = STu. Putting z = 2, and y = uin (e),
we get M(Pxap, Qu,)(qt) > M(ABxay, STu)(t)* M (Pxay, ABxay)(t)M (Qu, STu, (t)(Pxap, STu,t)(t)
Taking n— — Moo and using (1) and (2), we get M (z, Qu)(qt) = M (z,z,)(t)*M (z, z,t)(t)* M (Qu, z, ) (t)*
M(z,2,)(t) = M(Qu, z,)(t)i.e.M(z,Qu,)(qt) = M(z,Qu,)(t) Therefore, we get Qu = z. Hence STu =
z = Qu. Since (@, ST) is weak compatible, therefore, we have QSTu = STQu. Thus Qz = STz.
Step 6. Putting © = 2, and y = z in (e), we get M (Pxa,, Qz)(qt) > M(ABxay,, STz)(t) «M (Pxoy, AB
Ton)(t) *M (Qz, STz, ) (t)xM (Pxay,, STz)(t). Taking n — oo and using (2) and step 5, we get M (z, Qz)(qt)
Mz, Q2)(t) <M (2, 2)(t) $M(Q2, Q)(£) M (2, Q=)(1) > M(2,Q2)(1)xM (2, Q2)(¢) .e., M(2,Q2)(gt) >
M(z,Qz2)(t). Therefore, we get Qz = z.
Step 7. Putting x = xg, and y = Tz in (e), we get M(Pza,, Q)T z(qt) > M(ABxa,, STTz)t) *
M (Pxap, ABx2,)(t) M(QTz,STTz)(t)«M (P22, STTz)(t). As QT = TQ and ST = TS, we have
QTz = TQz = Tz ST(Tz) = T(STz) = TQz = T=z. Taking n — oo we get M(z,Tz,)(qt) >
M(z,Tz,)(t)xM(z, z), ()xM(Tz,Tz,)(t)xM(z,Tz,)(t) = M(z,Tz,)(t)xM(z,T2)(t),i.e. M(z,Tz)(qt) >
M (z,Tz)(t). Therefore, we get Tz = z. Now STz = Tz = z implies Sz = z.
Hence Sz =Tz =Qz = 2. we get Az = Bz = Pz =Qz =Tz = Sz = z. Hence, z is the common
fixed point of A, B, S, T, P and Q.
Case II. Suppose P is continuous. As P is continuous, P2z, — Pz and P(AB)xg, — Pz. As
(P, AB) is compatible M (PPxsa,,, (AB)(AB)x2,,)(t) =1, for all t > 0 or, M (Pz, (AB)(AB)xan, )(t) = 1.
Therefore, (AB)2xa, — Pz.
Step 8. Putting © = Pz, and y = x2,41 in condition (e), we have M (PPxa,, Qrani1)(qt) >
M(ABPxo,, STxo,41))(t)x M(PPxo,, ABPxo,)(t) «M(Quant1, STxon1)(t) * M(PPxoy, STxon11)(t).
Taking n — oo, we get M (Pz,z,qt) > M(Pz,z,t) *M(Pz, Pz,t) *M(z, z,t) *M(Pz,z,t) > M(Pz,z,t)x
M(Pz,z,t)i.e.M(Pz,z,qt) > M(Pz, z,t). Therefore by using lemma 2.2, we have Pz = z.
Step 9. Put x = ABxs, and y = xa,41 in (e), we get M (PABxa,, Qrant1)(qt) > M(ABABxzo,, STx2,11)
(t) *xM(PABxo,, ABABx2,)(t) *M (Qxan+1, ST x2,11)(t) * M(PABxay,, STxo,+1)(t). Taking n — oo,

PBz,Qx2n41)(qt) = M(ABBz,STx2,+1)(qt)

(
(PBz,STxan41,)(qt) As, BP = PB,AB = BA,
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we get M(ABz,z)(qt) > M(ABz,z)(t) « M(ABz, ABz)(t) * M(z, z,t) * M(ABz, z)(t) > M(ABz,z)(t) =
M(ABz, z)(t)

Uniqueness: Let u be another common fixed point of A, B, S, T, P and Q. Then Au = Bu = Pu= Qu =
Su=Tu=u. Put x = zand y = uin (e), we get M (Pz, Qu,)(qt) > M(ABz,STu,)(t)*M(Pz, ABz)(,t)
* M (Qu, Stu)(,t) * M(Pz,STu,)(t). Taking n — oo, we get M(z,u,)(qt) > M(z,u)(,t) «M(z,z,)(t) *
M (u,w)(t) « M(z,u, )(t) > M(z,u,)(t) « M(z,u,)(t) ie. M(z,u,)(qt) > M(z,u,)(t). we get z=u. O

Corollary 3.1. let A, S, P and Q be self maps of a complete Menger Space (X, F,x) with t xt > t
conditions are satisfied:

(a) P(X) < S(X), Q(X) < A(X);
b) either A or P is continuous;
c) (P, A) is semi- compatible and (Q,S) is weak-compatible;
d) there exists q € (0,1) such that M(py.qy)(qt) = Mapx,s1y)(t) * M(pg aBa)(t) * MGy, s14) (1) *
M(py,s7y)(t). Then A, S, P and Q have a unique common fized point in X .

(
(
(
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