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Abstract Let G be a finite group and πe(G) be the set of element orders of G. Let k ∈ πe(G) and mk

be the number of elements of order k in G. Set nse(G):={mk|k ∈ πe(G)}. In this paper, we prove that

if G is a group such that nse(G) = nse(PSL(2, 49)), then G ∼= PSL(2, 49).
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1 Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n. Let G be a finite group.

Denote by π(G) the set of primes p such that G contains an element of order p. Also the set of element

orders of G is denoted by πe(G). A finite group G is called a simple Kn−group, if G is a simple group

with |π(G)| = n. Set mi=mi(G)=|{g ∈ G| the order of g is i}|. In fact, mi is the number of elements of

order i in G, and nse(G) := {mi|i ∈ πe(G)}, the set of sizes of elements with the same order. Throughout

this paper, we denote by φ the Euler totient function. If G is a finite group, then we denote by Pq a

Sylow q−subgroup of G and nq(G) is the number of Sylow q−subgroup of G, that is nq(G)=|Sylq(G)|.

All further unexplained notations are standard and refer to [1], for example. In [8], it is proved that

all simple K4−groups can be uniquely determined by nse(G) and |G|. But, in [9], it is proved that the

groups A4, A5 and A6, and in [6], the groups PSL(2, q) for q ∈ {7, 8, 11, 13} are uniquely determined by

only nse(G). In [6], the authors gave the following problem:

Problem: Let G be a group such that nse(G) = nse(PSL(2, q)), where q is a prime power. Is G

isomorphic to PSL(2, q)?

In [5] we gave a positive answer to this problem and show that the group PSL(2, q) is characterizable

by only nse(G) for q = 25. In this paper, we give a positive answer to this problem for q = 49. In fact

the main theorem of our paper is as follow:

Main Theorem: Let G be a group such that nse(G) = nse(PSL(2, 49)), then G ∼= PSL(2, 49).
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2 Preliminary Results

In this section we bring some preliminary lemmas to be used in the proof of main theorem.

Lemma 2.1. [3] Let G be a finite solvable group and |G| = m · n, where m = pα1

1 ...pαr

r , (m, n) = 1.

Let π = {p1, ..., pr} and hm be the number of π−Hall subgroups of G. Then hm = qβ1

1 ...qβs

s , satisfies the

following conditions for all i ∈ {1, 2, ..., s}:

1. qβi

i ≡ 1 (mod pj), for some pj.

2. The order of some chief factor of G is divisible by qβi

i .

Lemma 2.2. [4] If G is a simple K3−group, then G is isomorphic to one of the following groups: A5,

A6, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3) or PSU(4, 2).

Lemma 2.3. [10] Let G be a simple K4-group. Then G is isomorphic to one of the following groups:

(1) A7, A8, A9, A10.

(2) M11, M11, J2.

(3) (a) L2(r), where r is a prime and satisfies r2 − 1 = 2a · 3b · vc with a > 1, b > 1, c > 1, v > 3, is a

prime;

(b) L2(2
m), where satisfies 2m − 1 = u, 2m + 1 = 3tb, with m > 2, u, t are primes, t > 3, b > 1; (c)

L2(3
m), where m satisfies 3m + 1 = 4t, 3m − 1 = 2uc or 3m + 1 = 4tb, 3m − 1 = 2u, with m > 2, u, t

are odd primes, b > 1, c > 1;

(d) L2(16), L2(25), L2(49), L2(81), L3(4), L3(5), L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9),

S6(2), O+
8 (2), G2(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3), U5(2), Sz(8), Sz(32), 3D4(2), 2F4(2)′.

Lemma 2.4. [8] Let G be a finite group, P ∈ Sylp(G), where p ∈ π(G). Let G have a normal se-

ries K � L � G. If P 6 L and p ∤ |K|, then the following hold:

(1) NG/K(PK/K) = NG(P )K/K;

(2) |G : NG(P )| = |L : NL(P )|, that is np(G) = np(L);

(3) |L/K : NL/K(PK/K)|t = |G : NG(P )| = |L : NL(P )|, that is np(L/K)t = np(G) = np(L) for some

positive integer t, and |NK(P )|t = |K|.

Lemma 2.5. [2] Let G be a finite group and m be a positive integer dividing |G|. If Lm(G) = {g ∈

G|gm = 1}, then m | |Lm(G)|.

Lemma 2.6. [9] Let G be a group containing more than two elements. Let k ∈ πe(G) and mk be

the number of elements of order k in G. If s = sup{mk|k ∈ πe(G)} is finite, then G is finite and

|G| 6 s(s2 − 1).

Lemma 2.7. [7] Let G be a finite group and p ∈ π(G) be odd. Suppose that P is a Sylow p−subgroup of

G and n = psm, where (p, m) = 1. If P is not cyclic and s > 1, then the number of elements of order n
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is always a multiple of ps.

Let G be a group such that nse(G) = nse(PSL(2, 49)). By Lemma 2.6, we can assume that G is

finite. Let mn be the number of elements of order n. We note that mn = kφ(n), where k is the number

of cyclic subgroups of order n in G. Also we note that if n > 2, then φ(n) is even. If n ∈ πe(G), then by

Lemma 2.5 and the above notation we have:































φ(n) | mn

(∗)

n |
∑

d|n md

In the proof of the main theorem, we almost apply (∗) and the above comments.

3 Proof of the Main Theorem

Let G be a group, such that nse(G)=nse(PSL(2, 49))={1, 225, 2400, 2450, 4704, 4900, 9800, 23520}.

At first we prove that π(G) ⊆ {2, 3, 5, 7}. Since 1225 ∈ nse(G), it follows that by (∗), 2 ∈ π(G) and

m2 = 1255. Let 2 6= p ∈ π(G), by (∗), p | (1 + mp) and (p − 1) | mp, which implies that p ∈ {3, 5,

7, 11, 29, 43}. If 11 ∈ πe(G), then by (∗), m11 = 9800. On the other hand, by (∗), we conclude that

if 22 ∈ πe(G), then m22 = 9800, 23520, 4900, 2450 or 2400 and 22 | (1 + m2 + m11 + m22), which is a

contradiction. That is 22 6∈ πe(G). Thus the group P11 acts fixed point freely on the set of elements

of order 2, and |P11| | m2, which is a contradiction. Hence 11 6∈ π(G) and similarly we can prove that

29 and 43 6∈ π(G). Therefore π(G) ⊆ {2, 3, 5, 7}. If 3, 5 and 7 ∈ π(G), then m3 = 2450, m5 = 4704

and m7 = 2400, by (∗). Now let 3 ∈ π(G), we can see easily that G does not contain any elements of

order 27. Hence exp(P3) = 3 or 9. Let exp(P3) = 3, by Lemma 2.5, with consider m = |P3|, we have

|P3| | (1 + m3) = 2451. Hence |P3| = 3, then n3 = m3/φ(3) = 1225 | |G|. Now let exp(P3) = 9, by (∗)

we have m9 = 2400 or 4704. By Lemma 2.5, |P3| | (1 + m3 + m9), then |P3| = 9 or 27. If |P3| = 9,

then n3 = m9/φ(9) = 400 or 784 and if |P3| = 27, then by Lemma 2.7, 9 | m9, which is a contradiction.

Therefore if 3 ∈ π(G), then 5 ∈ π(G). If 5 ∈ π(G), then we can see easily that G does not contain any

elements of order 125. Hence exp(P5) = 5 or 25. Let exp(P5) = 5, by Lemma 2.5, |P5| | (1+ m5) = 4705.

Hence |P5| = 5, then n5 = m5/φ(5) = 1176 | |G|. Now let exp(P5) = 25, by (∗) we have m25 = 23520.

By Lemma 2.5, |P5| | (1 + m5 + m25) = 28225, then |P25| = 25. Thus n5 = m25/φ(25) = 1176. Therefore

if 5 ∈ π(G), then 3 and 7 ∈ π(G). By the above discussion in follow, we show that π(G) could not be the

sets {2} and {2, 7}, and so π(G) must be equal to {2, 3, 5, 7}.

Case a. Let π(G) = {2}, then πe(G) ⊆ {1, 2, 22, . . ., 26}. Since nse(G) has eight elements and

|πe(G)| 6 7, which is a contradiction. Therefore this case impossible.
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Case b. Let π(G) = {2, 7}. By (∗), 74 6∈ πe(G), then we have exp(P7) = 7, 49 or 343. If exp(P7) = 7,

then |P7| | (1 + m7) = 2401. Hence |P7| | 74. If |P7| = 7, then n7 = m7/φ(7) = 400 | |G|, since

5 6∈ π(G) we get a contradiction. If |P7| = 49, then |G| = 2m × 49 = 49000+ 2400k1 + 2450k2 + 4704k3 +

4900k4 + 9800k5 + 23520k6, where m, k1, k2, k4, k3, k5 and k6 are non-negative integers. Since πe(G) ⊆

{1, 2, 22, 23, 24, 25, 26}
⋃

{7, 7 × 22, . . ., 7 × 25}, then 0 6 k1 + k2 + k3 + k4 + k5 + k6 6 5. There-

fore 49000 6 |G| 6 23520 × 5 + 49000, then m = 10 or 11. If m = 10, then 1176 = 2400k1 + 2450k2 +

4704k3+4900k4+9800k5+23520k6. It is easy to check that the equation has no solution. If m = 11, then

51352 = 2400k1+2450k2+4704k3+4900k4+9800k5+23520k6. It is easy to check that the equation has no

solution. If |P7| = 343, then |G| = 2m×343 = 49000+2400k1+2450k2+4704k3+4900k4+9800k5+23520k6,

then m = 8. Therefore 38808 = 2400k1 + 2450k2 + 4704k3 + 4900k4 + 9800k5 + 23520k6, it is easy to

check that the equation has a solution (k1, k2, k3, k4, k5, k6) = (0, 0, 2, 0, 3, 0). By (∗), we have if 4,

8 ∈ πe(G), then m4 = 2450 and m8 = 4900. We know that 27 6∈ πe(G), so exp(P2) = 2, 4, 8, 16, 32

or 64. It known that if exp(P2) = 2i for 1 6 i 6 6, then |P2| | (1 + m2 + . . . + m2i), by Lemma 2.5.

Also by (∗), m16 ∈ {2400, 4704, 23520}, m32 ∈ {2400, 4704, 23520} and m64 ∈ {2400, 4704, 23520}. By

an easy computer calculation, |P2| | 27. Since |P2| = 28, this is impossible. Similarly if |P7| = 2401 we

can get a contradiction. Now suppose that exp(P7) = 49. By (∗), we have m49 = 4704 or 23520. Since

|P7| | (1 + m7 + m49) we can conclude that |P7| = 49, then n7 = m49/φ(49). If m49 = 4704, then by

Sylow theorem we get a contradiction. If m49 = 23520, then by 5 6∈ π(G) we get a contradiction. Let

exp(P7) = 343. We know |P7| = 7n, where n > 3. If |P7| = 343, then by m343 = 4704 or 23520, we get a

contradiction. If |P7| = 7n where n > 4, by Lemma 2.7 343 | m343, which is a contradiction.

Therefore π(G) = {2, 3, 5, 7}. It known that exp(P3) = 3 or 9, we prove that exp(P3) 6= 9. If

exp(P3) = 9, then we know that |P3| = 9 and n3 = 400 or 784. Since every Sylow 3-subgroups of order

has two elements of order 3, then m3 6 400 × 2 or 784 × 2, but m3 = 2450, a contradiction. Hence

exp(P3) = 3, then |P3| = 3. Now we show that G does not contain any element of order 21. Suppose

that 21 ∈ πe(G) we know that if P and Q are Sylow 3−subgroups of G, then P and Q are conjugate,

which implies that CG(P ) and CG(Q) are conjugate in G. Therefore m21 = φ(21) · n3 · k, where k is the

number of cyclic subgroups of order 7 in CG(P3). Since n3 = 1225, we have 2450 | m21. On the other

hand we have, 21 | (1 + m3 + m7 + m21), which is a contradiction. Hence 21 6∈ πe(G). Since 21 6∈ πe(G),

then the group P3 acts fixed point freely on the set of elements of order 7, and so |P3| | m7 = 2400,

which implies that |P3| = 3. Also the group P7 acts fixed point freely on the set of elements of order

3, and so |P7| | m3 = 2450, which implies that |P7| | 49. Also we can prove that 15 6∈ πe(G), then

the group P5 acts fixed point freely on the set of elements of order 3, and so |P5| | m3 = 2450, which

implies that |P5| | 25. We know that, |P2| | 27, now we prove that if exp(P2) = 8, then |P2| | 27 and if

exp(P2) 6= 8, then |P2| | 26. Let exp(P2) = 8, then |P2| | (1+m2 +m4 +m8) = 8576, hence |P2| | 27. Now

suppose that exp(P2) 6= 8, by (∗) we can show that 26 6∈ πe(G), then exp(P2) = 2, 4, 16 or 32. Hence

|P2| | (1+m2 + . . .+m2i), where 1 6 i 6 5 and i 6= 3. Also it known that m16 ∈ {2400, 4704, 23520} and

m32 ∈ {2400, 4704, 23520}. By an easy computer calculation |P2| | 26. Therefore |G| = 2n × 3× 5m × 7k,

where n 6 7, m 6 2 and k 6 2. We claim that G is unsolvable group. Suppose that G is a solvable

group as n5 = 1176, then by Lemma 2.1, 49 ≡ 1 (mod 5), which is a contradiction. Hence G is an

unsolvable group. Since G is an unsolvable group such that 3 | |G| but 9 ∤ |G|, so G has a normal
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series 1 � N � H � G, where N is a maximal solvable normal subgroup of G and H/N is an unsolvable

minimal normal subgroup of G/N . Then H/N is a non-abelian simple K3−group or K4−group. Let

H/N be a non-abelian simple K3−group, then by Lemma 2.2, H/N ∼= A5 or PSL(2, 7). Let H/N ∼= A5,

if P3 ∈ Syl3(G), then P3N/N ∈ Syl3(H/N) and n3(H/N)t = n3(G) for some positive integer t and 3 ∤ t,

by Lemma 2.4. Since n3(H/N) = n3(A5) = 10, then 1225 = 10t, which is a contradiction. Now let

H/N ∼= PSL(2, 7), if P3 ∈ Syl3(G), then P3N/N ∈ Syl3(H/N) and n3(H/N)t = n3(G) for some positive

integer t and 3 ∤ t, by Lemma 2.4. Since n3(H/N) = n3(PSL(2, 7)) = 28, then 1225 = 28t, which is a

contradiction. Hence H/N is a non-abelian simple K4−group. By Lemma 2.3, H/N ≡PSL(2,49). Now

set H := H/N ∼=PSL(2,49) and G := G/N . On the other hand:

PSL(2,49) ∼= H ∼= HCG(H)/CG(H) 6 G/CG(H) = NG(H)/CG(H) 6 Aut(H).

Let K = {x ∈ G | xN ∈ CG(H)}, then G/K ∼= G/CG(H). Hence PSL(2, 49)6 G/K 6

Aut(PSL(2,49)), then G/K ∼=PSL(2,49), PSL(2,49).21, PSL(2,49).22, PSL(2,49).23 or PSL(2,49).22.

Therefore |G| = 2n × 3 × 25 × 49, where n 6 7. It known that N 6 K, as |K| | 8, n 6 7 and N is a

maximal solvable normal subgroup of G, then N = K. Hence G/N is isomorphic to one of the groups:

PSL(2,49), PSL(2, 49).21, PSL(2, 49).22, PSL(2, 49).23 or PSL(2,49).22. Let |G| = 27 × 3 × 25 × 49.

We know that exp(P2) = 8, then πe(G) ⊆ {1, 2, 4, 8}
⋃

{3, 6, 12, 24}
⋃

{5, 25, 10, 20, 40, 50,

100, 200}
⋃

{7, 49, 14, 28, 56, 98, 196, 392}
⋃

{35, 175, 245, 1225}. Thus |πe(G)| 6 28. Therefore

421400 = 2400k1+2450k2+4704k3+4900k4+9800k5+23520k6, where 0 6 k1+k2+k3+k4+k5+k6 6 20,

it is easy to check that this equation has no solution. Hence |G| = 2n × 3 × 25 × 49 where n 6 6,

as 49000 6 |G|, then 4 6 n 6 6. If G/N is isomorphic to PSL(2,49).22, then N = 1. Since

nse(G) 6=nse(PSL(2,49).22), this is impossible. If G/N is isomorphic to one of the groups: PSL(2,49).21,

PSL(2,49).22 or PSL(2, 49).23, it is clear that |G| = 25 × 3 × 25 × 49 or |G| = 26 × 3 × 25 × 49. If

|G| = 25 × 3 × 25 × 49, then N = 1. Since nse(G) 6=nse(PSL(2,49).21), nse(G) 6=nse(PSL(2,49).22) and

nse(G) 6=nse(PSL(2,49).23), this is impossible. Now let |G| = 26 × 3 × 25 × 49, then |N | = 2. So G has

a normal subgroup G of order 2, generated by a central involution z. Let G/N ∼=PSL(2,49).21 =PGL(2,

49) and f be the natural homomorphism from G to G/N . Then f takes the identity and the element z

to the identity of G/N , and takes the other 1224 elements of order 2 to (1225 − 1)/2 = 612 elements of

order 2 in G/N ∼= PSL(2, 49).21. On the other hand, suppose that Nx and Ny are elements of order

2 in the same conjugacy class in G/N ∼= PSL(2,49).21. Then Ny = NxNg = N(xg) for some g in G,

so y = xg or zxg, and then since zxg = (zg)(xg), we have y = xg or (zx)g. Hence if x has order 2,

then so does y. It follows from this that the images in G/N of elements of order 2 in G form a union of

conjugacy classes in G/N . But that’s impossible. There are two conjugacy classes of elements of order

2 in G/N ∼=PSL(2,49).21: one of size 1225 containing elements of order 2 in PSL(2,49), and the other

of size 1176. As 1 + 612 = 613 images in G/N of the elements of order 2 from G make up a union of

conjugacy classes. We get a contradiction. Similarly if G/N ∼= PSL(2,49).22 or PSL(2,49).23, we can

get a contradiction. Hence no such group G exists. If G/N ∼=PSL(2,49), then |G| = 24 × 3 × 25 × 49,

|G| = 25×3×25×49 or |G| = 26 ×3×25×49. If |G| = 24×3×25×49, then N = 1 and G ∼=PSL(2,49).

If |G| = 25 × 3 × 25 × 49, then |N | = 2. Similar to the above discussion we get a contradiction. Let

|G| = 26×3×25×49, then |N | = 4. Consider the action of G on N by conjugation. The kernel is CG(N),
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and G/CG(N) is isomorphic to a subgroup of Aut(N). Here N has order 4, so Aut(N) is isomorphic to

either Aut(C4) = C2 or Aut(V4) = S3. In particular, |G/CG(N)| is at most 6. But also CG(N) contains

N , since N is abelian, and then since G/N is PSL(2,49), which is simple and has order greater than 6, it

follows that |G/CG(N)| = 1. Thus G = CG(N), so N is central. Now we know that N is central in G, if x

has order 2 in G, and lies outside N , then Nx is one of the 1225 elements of order 2 in PSL(2,49)= G/N .

Choose any such x, then if Ny is any element of order 2 in G/N , then Ny is conjugate to Nx, so Ny =

(Ng)−1Nx(Ng) = N(g−1xg) for some g in G, so Ny= {a(g−1xg) : a ∈ N}, and in particular, we find

that Ny contains at least two elements of order 2. Hence G has at least 2 × 1225 = 2450 elements of

order 2, a contradiction. Thus the proof is completed. �
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