www.sajm-online.com ISSN 2251-1512

NSE characterization of the group PSL(2,49)

Alireza Khalili Asboei ^①*

① Department of Mathematics, Babol Education, Mazandaran, Iran E-mail: khaliliasbo@yahoo.com

Received: 8-5-2012; Accepted: 9-28-2012 *Corresponding author

Abstract Let G be a finite group and $\pi_e(G)$ be the set of element orders of G. Let $k \in \pi_e(G)$ and m_k be the number of elements of order k in G. Set $nse(G):=\{m_k | k \in \pi_e(G)\}$. In this paper, we prove that if G is a group such that nse(G) = nse(PSL(2, 49)), then $G \cong PSL(2, 49)$.

Key Words element order, set of the numbers of elements of the same order, Sylow subgroupMSC 2010 20D06, 20D20

1 Introduction

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Denote by $\pi(G)$ the set of primes p such that G contains an element of order p. Also the set of element orders of G is denoted by $\pi_e(G)$. A finite group G is called a simple K_n -group, if G is a simple group with $|\pi(G)| = n$. Set $m_i = m_i(G) = |\{g \in G| \text{ the order of } g \text{ is } i\}|$. In fact, m_i is the number of elements of order i in G, and $\operatorname{nse}(G) := \{m_i | i \in \pi_e(G)\}$, the set of sizes of elements with the same order. Throughout this paper, we denote by ϕ the Euler totient function. If G is a finite group, then we denote by P_q a Sylow q-subgroup of G and $n_q(G)$ is the number of Sylow q-subgroup of G, that is $n_q(G) = |Syl_q(G)|$. All further unexplained notations are standard and refer to [1], for example. In [8], it is proved that all simple K_4 -groups can be uniquely determined by $\operatorname{nse}(G)$ and |G|. But, in [9], it is proved that the groups A_4 , A_5 and A_6 , and in [6], the groups $\operatorname{PSL}(2, q)$ for $q \in \{7, 8, 11, 13\}$ are uniquely determined by only $\operatorname{nse}(G)$. In [6], the authors gave the following problem:

Problem: Let G be a group such that nse(G) = nse(PSL(2,q)), where q is a prime power. Is G isomorphic to PSL(2,q)?

In [5] we gave a positive answer to this problem and show that the group PSL(2, q) is characterizable by only nse(G) for q = 25. In this paper, we give a positive answer to this problem for q = 49. In fact the main theorem of our paper is as follow:

Main Theorem: Let G be a group such that nse(G) = nse(PSL(2, 49)), then $G \cong PSL(2, 49)$.

Citation: Alireza Khalili Asboei, NSE characterization of the group PSL(2, 49), South Asian J Math, 2012, 2(5), 460-465.

2 Preliminary Results

In this section we bring some preliminary lemmas to be used in the proof of main theorem.

Lemma 2.1. [3] Let G be a finite solvable group and $|G| = m \cdot n$, where $m = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, (m, n) = 1. Let $\pi = \{p_1, \dots, p_r\}$ and h_m be the number of π -Hall subgroups of G. Then $h_m = q_1^{\beta_1} \dots q_s^{\beta_s}$, satisfies the following conditions for all $i \in \{1, 2, \dots, s\}$:

- 1. $q_i^{\beta_i} \equiv 1 \pmod{p_j}$, for some p_j .
- 2. The order of some chief factor of G is divisible by $q_i^{\beta_i}$.

Lemma 2.2. [4] If G is a simple K_3 -group, then G is isomorphic to one of the following groups: A_5 , A_6 , PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3) or PSU(4, 2).

Lemma 2.3. [10] Let G be a simple K_4 -group. Then G is isomorphic to one of the following groups:

 $(1) A_7, A_8, A_9, A_{10}.$

(2) M_{11} , M_{11} , J_2 .

(3) (a) $L_2(r)$, where r is a prime and satisfies $r^2 - 1 = 2^a \cdot 3^b \cdot v^c$ with $a \ge 1$, $b \ge 1$, $c \ge 1$, v > 3, is a prime;

(b) $L_2(2^m)$, where satisfies $2^m - 1 = u$, $2^m + 1 = 3t^b$, with $m \ge 2$, u, t are primes, t > 3, $b \ge 1$; (c) $L_2(3^m)$, where m satisfies $3^m + 1 = 4t$, $3^m - 1 = 2u^c$ or $3^m + 1 = 4t^b$, $3^m - 1 = 2u$, with $m \ge 2$, u, t are odd primes, $b \ge 1$, $c \ge 1$;

(d) $L_2(16)$, $L_2(25)$, $L_2(49)$, $L_2(81)$, $L_3(4)$, $L_3(5)$, $L_3(7)$, $L_3(8)$, $L_3(17)$, $L_4(3)$, $S_4(4)$, $S_4(5)$, $S_4(7)$, $S_4(9)$, $S_6(2)$, $O_8^+(2)$, $G_2(3)$, $U_3(4)$, $U_3(5)$, $U_3(7)$, $U_3(8)$, $U_3(9)$, $U_4(3)$, $U_5(2)$, Sz(8), Sz(32), ${}^{3}D_4(2)$, $2F_4(2)'$.

Lemma 2.4. [8] Let G be a finite group, $P \in Syl_p(G)$, where $p \in \pi(G)$. Let G have a normal series $K \leq L \leq G$. If $P \leq L$ and $p \nmid |K|$, then the following hold: (1) $N_{G/K}(PK/K) = N_G(P)K/K$; (2) $|G: N_G(P)| = |L: N_L(P)|$, that is $n_p(G) = n_p(L)$; (3) $|L/K: N_{L/K}(PK/K)|t = |G: N_G(P)| = |L: N_L(P)|$, that is $n_p(L/K)t = n_p(G) = n_p(L)$ for some positive integer t, and $|N_K(P)|t = |K|$.

Lemma 2.5. [2] Let G be a finite group and m be a positive integer dividing |G|. If $L_m(G) = \{g \in G | g^m = 1\}$, then $m \mid |L_m(G)|$.

Lemma 2.6. [9] Let G be a group containing more than two elements. Let $k \in \pi_e(G)$ and m_k be the number of elements of order k in G. If $s = \sup\{m_k | k \in \pi_e(G)\}$ is finite, then G is finite and $|G| \leq s(s^2 - 1).$

Lemma 2.7. [7] Let G be a finite group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow p-subgroup of G and $n = p^s m$, where (p, m) = 1. If P is not cyclic and s > 1, then the number of elements of order n

is always a multiple of p^s .

Let G be a group such that nse(G) = nse(PSL(2, 49)). By Lemma 2.6, we can assume that G is finite. Let m_n be the number of elements of order n. We note that $m_n = k\phi(n)$, where k is the number of cyclic subgroups of order n in G. Also we note that if n > 2, then $\phi(n)$ is even. If $n \in \pi_e(G)$, then by Lemma 2.5 and the above notation we have:

$$\begin{cases}
\phi(n) \mid m_n \\
 & (*) \\
n \mid \sum_{d \mid n} m_d
\end{cases}$$

In the proof of the main theorem, we almost apply (*) and the above comments.

3 Proof of the Main Theorem

Let G be a group, such that $nse(G)=nse(PSL(2, 49))=\{1, 225, 2400, 2450, 4704, 4900, 9800, 23520\}$. At first we prove that $\pi(G) \subseteq \{2, 3, 5, 7\}$. Since $1225 \in \text{nse}(G)$, it follows that by $(*), 2 \in \pi(G)$ and $m_2 = 1255$. Let $2 \neq p \in \pi(G)$, by (*), $p \mid (1 + m_p)$ and $(p - 1) \mid m_p$, which implies that $p \in \{3, 5, 5, 5\}$ 7, 11, 29, 43. If $11 \in \pi_e(G)$, then by (*), $m_{11} = 9800$. On the other hand, by (*), we conclude that if $22 \in \pi_e(G)$, then $m_{22} = 9800, 23520, 4900, 2450$ or 2400 and $22 \mid (1 + m_2 + m_{11} + m_{22})$, which is a contradiction. That is $22 \notin \pi_e(G)$. Thus the group P_{11} acts fixed point freely on the set of elements of order 2, and $|P_{11}| \mid m_2$, which is a contradiction. Hence $11 \notin \pi(G)$ and similarly we can prove that 29 and 43 $\notin \pi(G)$. Therefore $\pi(G) \subseteq \{2, 3, 5, 7\}$. If 3, 5 and $7 \in \pi(G)$, then $m_3 = 2450, m_5 = 4704$ and $m_7 = 2400$, by (*). Now let $3 \in \pi(G)$, we can see easily that G does not contain any elements of order 27. Hence $\exp(P_3) = 3$ or 9. Let $\exp(P_3) = 3$, by Lemma 2.5, with consider $m = |P_3|$, we have $|P_3| | (1+m_3) = 2451$. Hence $|P_3| = 3$, then $n_3 = m_3/\phi(3) = 1225 | |G|$. Now let $\exp(P_3) = 9$, by (*) we have $m_9 = 2400$ or 4704. By Lemma 2.5, $|P_3| \mid (1 + m_3 + m_9)$, then $|P_3| = 9$ or 27. If $|P_3| = 9$, then $n_3 = m_9/\phi(9) = 400$ or 784 and if $|P_3| = 27$, then by Lemma 2.7, $9 \mid m_9$, which is a contradiction. Therefore if $3 \in \pi(G)$, then $5 \in \pi(G)$. If $5 \in \pi(G)$, then we can see easily that G does not contain any elements of order 125. Hence $\exp(P_5) = 5$ or 25. Let $\exp(P_5) = 5$, by Lemma 2.5, $|P_5| \mid (1+m_5) = 4705$. Hence $|P_5| = 5$, then $n_5 = m_5/\phi(5) = 1176 | |G|$. Now let $\exp(P_5) = 25$, by (*) we have $m_{25} = 23520$. By Lemma 2.5, $|P_5| | (1 + m_5 + m_{25}) = 28225$, then $|P_{25}| = 25$. Thus $n_5 = m_{25}/\phi(25) = 1176$. Therefore if $5 \in \pi(G)$, then 3 and $7 \in \pi(G)$. By the above discussion in follow, we show that $\pi(G)$ could not be the sets $\{2\}$ and $\{2, 7\}$, and so $\pi(G)$ must be equal to $\{2, 3, 5, 7\}$.

<u>**Case a.**</u> Let $\pi(G) = \{2\}$, then $\pi_e(G) \subseteq \{1, 2, 2^2, \ldots, 2^6\}$. Since $\operatorname{nse}(G)$ has eight elements and $|\pi_e(G)| \leq 7$, which is a contradiction. Therefore this case impossible.

<u>**Case b.**</u> Let $\pi(G) = \{2, 7\}$. By $(*), 7^4 \notin \pi_e(G)$, then we have $exp(P_7) = 7, 49$ or 343. If $exp(P_7) = 7$, then $|P_7| \mid (1 + m_7) = 2401$. Hence $|P_7| \mid 7^4$. If $|P_7| = 7$, then $n_7 = m_7/\phi(7) = 400 \mid |G|$, since $5 \notin \pi(G)$ we get a contradiction. If $|P_7| = 49$, then $|G| = 2^m \times 49 = 49000 + 2400k_1 + 2450k_2 + 4704k_3 + 47$ $4900k_4 + 9800k_5 + 23520k_6$, where $m, k_1, k_2, k_4, k_3, k_5$ and k_6 are non-negative integers. Since $\pi_e(G) \subseteq$ $\{1, 2, 2^2, 2^3, 2^4, 2^5, 2^6\} \bigcup \{7, 7 \times 2^2, \dots, 7 \times 2^5\}, \text{ then } 0 \leq k_1 + k_2 + k_3 + k_4 + k_5 + k_6 \leq 5. \text{ There-}$ for $49000 \leq |G| \leq 23520 \times 5 + 49000$, then m = 10 or 11. If m = 10, then $1176 = 2400k_1 + 2450k_2 + 4900k_1 + 2450k_2 + 4800k_1 + 2450k_1 + 2450k_2 + 4800k_1 + 2450k_2 + 4800k_1 + 2450k_1 +$ $4704k_3 + 4900k_4 + 9800k_5 + 23520k_6$. It is easy to check that the equation has no solution. If m = 11, then $51352 = 2400k_1 + 2450k_2 + 4704k_3 + 4900k_4 + 9800k_5 + 23520k_6$. It is easy to check that the equation has no solution. If $|P_7| = 343$, then $|G| = 2^m \times 343 = 49000 + 2400k_1 + 2450k_2 + 4704k_3 + 4900k_4 + 9800k_5 + 23520k_6$, then m = 8. Therefore $38808 = 2400k_1 + 2450k_2 + 4704k_3 + 4900k_4 + 9800k_5 + 23520k_6$, it is easy to check that the equation has a solution $(k_1, k_2, k_3, k_4, k_5, k_6) = (0, 0, 2, 0, 3, 0)$. By (*), we have if 4, $8 \in \pi_e(G)$, then $m_4 = 2450$ and $m_8 = 4900$. We know that $2^7 \notin \pi_e(G)$, so $exp(P_2) = 2, 4, 8, 16, 32$ or 64. It known that if $exp(P_2) = 2^i$ for $1 \le i \le 6$, then $|P_2| \mid (1 + m_2 + \ldots + m_{2^i})$, by Lemma 2.5. Also by (*), $m_{16} \in \{2400, 4704, 23520\}, m_{32} \in \{2400, 4704, 23520\}$ and $m_{64} \in \{2400, 4704, 23520\}$. By an easy computer calculation, $|P_2| | 2^7$. Since $|P_2| = 2^8$, this is impossible. Similarly if $|P_7| = 2401$ we can get a contradiction. Now suppose that $exp(P_7) = 49$. By (*), we have $m_{49} = 4704$ or 23520. Since $|P_7| | (1 + m_7 + m_{49})$ we can conclude that $|P_7| = 49$, then $n_7 = m_{49}/\phi(49)$. If $m_{49} = 4704$, then by Sylow theorem we get a contradiction. If $m_{49} = 23520$, then by $5 \notin \pi(G)$ we get a contradiction. Let $exp(P_7) = 343$. We know $|P_7| = 7^n$, where $n \ge 3$. If $|P_7| = 343$, then by $m_{343} = 4704$ or 23520, we get a contradiction. If $|P_7| = 7^n$ where $n \ge 4$, by Lemma 2.7 343 | m_{343} , which is a contradiction.

Therefore $\pi(G) = \{2, 3, 5, 7\}$. It known that $\exp(P_3) = 3$ or 9, we prove that $\exp(P_3) \neq 9$. If $\exp(P_3) = 9$, then we know that $|P_3| = 9$ and $n_3 = 400$ or 784. Since every Sylow 3-subgroups of order has two elements of order 3, then $m_3 \leq 400 \times 2$ or 784×2 , but $m_3 = 2450$, a contradiction. Hence $\exp(P_3) = 3$, then $|P_3| = 3$. Now we show that G does not contain any element of order 21. Suppose that $21 \in \pi_e(G)$ we know that if P and Q are Sylow 3-subgroups of G, then P and Q are conjugate, which implies that $C_G(P)$ and $C_G(Q)$ are conjugate in G. Therefore $m_{21} = \phi(21) \cdot n_3 \cdot k$, where k is the number of cyclic subgroups of order 7 in $C_G(P_3)$. Since $n_3 = 1225$, we have $2450 \mid m_{21}$. On the other hand we have, $21 \mid (1 + m_3 + m_7 + m_{21})$, which is a contradiction. Hence $21 \notin \pi_e(G)$. Since $21 \notin \pi_e(G)$, then the group P_3 acts fixed point freely on the set of elements of order 7, and so $|P_3| \mid m_7 = 2400$, which implies that $|P_3| = 3$. Also the group P_7 acts fixed point freely on the set of elements of order 3, and so $|P_7| \mid m_3 = 2450$, which implies that $|P_7| \mid 49$. Also we can prove that $15 \notin \pi_e(G)$, then the group P_5 acts fixed point freely on the set of elements of order 3, and so $|P_5| \mid m_3 = 2450$, which implies that $|P_5| | 25$. We know that, $|P_2| | 2^7$, now we prove that if $exp(P_2) = 8$, then $|P_2| | 2^7$ and if $exp(P_2) \neq 8$, then $|P_2| \mid 2^6$. Let $exp(P_2) = 8$, then $|P_2| \mid (1 + m_2 + m_4 + m_8) = 8576$, hence $|P_2| \mid 2^7$. Now suppose that $exp(P_2) \neq 8$, by (*) we can show that $2^6 \notin \pi_e(G)$, then $exp(P_2) = 2$, 4, 16 or 32. Hence $|P_2| \mid (1 + m_2 + \ldots + m_{2^i})$, where $1 \le i \le 5$ and $i \ne 3$. Also it known that $m_{16} \in \{2400, 4704, 23520\}$ and $m_{32} \in \{2400, 4704, 23520\}$. By an easy computer calculation $|P_2| \mid 2^6$. Therefore $|G| = 2^n \times 3 \times 5^m \times 7^k$, where $n \leq 7$, $m \leq 2$ and $k \leq 2$. We claim that G is unsolvable group. Suppose that G is a solvable group as $n_5 = 1176$, then by Lemma 2.1, $49 \equiv 1 \pmod{5}$, which is a contradiction. Hence G is an unsolvable group. Since G is an unsolvable group such that $3 \mid |G|$ but $9 \nmid |G|$, so G has a normal series $1 \leq N \leq H \leq G$, where N is a maximal solvable normal subgroup of G and H/N is an unsolvable minimal normal subgroup of G/N. Then H/N is a non-abelian simple K_3 -group or K_4 -group. Let H/N be a non-abelian simple K_3 -group, then by Lemma 2.2, $H/N \cong A_5$ or PSL(2, 7). Let $H/N \cong A_5$, if $P_3 \in Syl_3(G)$, then $P_3N/N \in Syl_3(H/N)$ and $n_3(H/N)t = n_3(G)$ for some positive integer t and $3 \nmid t$, by Lemma 2.4. Since $n_3(H/N) = n_3(A_5) = 10$, then 1225 = 10t, which is a contradiction. Now let $H/N \cong PSL(2, 7)$, if $P_3 \in Syl_3(G)$, then $P_3N/N \in Syl_3(H/N)$ and $n_3(H/N)t = n_3(G)$ for some positive integer t and $3 \nmid t$, by Lemma 2.4. Since $n_3(H/N) = n_3(PSL(2,7)) = 28$, then 1225 = 28t, which is a contradiction. Hence H/N is a non-abelian simple K_4 -group. By Lemma 2.3, $H/N \equiv PSL(2,49)$. Now set $\overline{H} := H/N \cong PSL(2,49)$ and $\overline{G} := G/N$. On the other hand:

$$\mathrm{PSL}(2,49) \cong \overline{H} \cong \overline{H}C_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H}) \leqslant \overline{G}/C_{\overline{G}}(\overline{H}) = N_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H}) \leqslant Aut(\overline{H})$$

Let $K = \{x \in G \mid xN \in C_{\overline{G}}(\overline{H})\}$, then $G/K \cong \overline{G}/C_{\overline{G}}(\overline{H})$. Hence $PSL(2, 49) \leqslant G/K \leqslant$ Aut(PSL(2,49)), then $G/K \cong PSL(2,49)$, $PSL(2,49).2_1$, $PSL(2,49).2_2$, $PSL(2,49).2_3$ or $PSL(2,49).2^2$. Therefore $|G| = 2^n \times 3 \times 25 \times 49$, where $n \leq 7$. It known that $N \leq K$, as $|K| \mid 8$, $n \leq 7$ and N is a maximal solvable normal subgroup of G, then N = K. Hence G/N is isomorphic to one of the groups: $PSL(2,49), PSL(2,49).2_1, PSL(2,49).2_2, PSL(2,49).2_3 \text{ or } PSL(2,49).2^2.$ Let $|G| = 2^7 \times 3 \times 25 \times 49.$ $100, 200 \} \bigcup \{7, 49, 14, 28, 56, 98, 196, 392\} \bigcup \{35, 175, 245, 1225\}.$ Thus $|\pi_e(G)| \leq 28$. Therefore $421400 = 2400k_1 + 2450k_2 + 4704k_3 + 4900k_4 + 9800k_5 + 23520k_6, \text{ where } 0 \leq k_1 + k_2 + k_3 + k_4 + k_5 + k_6 \leq 20,$ it is easy to check that this equation has no solution. Hence $|G| = 2^n \times 3 \times 25 \times 49$ where $n \leq 6$, as 49000 $\leq |G|$, then $4 \leq n \leq 6$. If G/N is isomorphic to $PSL(2,49).2^2$, then N = 1. Since $nse(G) \neq nse(PSL(2,49).2^2)$, this is impossible. If G/N is isomorphic to one of the groups: $PSL(2,49).2_1$, $PSL(2,49).2_2$ or $PSL(2, 49).2_3$, it is clear that $|G| = 2^5 \times 3 \times 25 \times 49$ or $|G| = 2^6 \times 3 \times 25 \times 49$. If $|G| = 2^5 \times 3 \times 25 \times 49$, then N = 1. Since $nse(G) \neq nse(PSL(2,49), 2_1)$, $nse(G) \neq nse(PSL(2,49), 2_2)$ and $\operatorname{nse}(G) \neq \operatorname{nse}(\operatorname{PSL}(2,49),2_3)$, this is impossible. Now let $|G| = 2^6 \times 3 \times 25 \times 49$, then |N| = 2. So G has a normal subgroup G of order 2, generated by a central involution z. Let $G/N \cong PSL(2,49).2_1 = PGL(2,49).2_1$ 49) and f be the natural homomorphism from G to G/N. Then f takes the identity and the element z to the identity of G/N, and takes the other 1224 elements of order 2 to (1225-1)/2 = 612 elements of order 2 in $G/N \cong PSL(2, 49).2_1$. On the other hand, suppose that Nx and Ny are elements of order 2 in the same conjugacy class in $G/N \cong PSL(2,49).2_1$. Then $Ny = Nx^{Ng} = N(x^g)$ for some g in G, so $y = x^g$ or zx^g , and then since $zx^g = (z^g)(x^g)$, we have $y = x^g$ or $(zx)^g$. Hence if x has order 2, then so does y. It follows from this that the images in G/N of elements of order 2 in G form a union of conjugacy classes in G/N. But that's impossible. There are two conjugacy classes of elements of order 2 in $G/N \cong PSL(2,49).2_1$: one of size 1225 containing elements of order 2 in PSL(2,49), and the other of size 1176. As 1 + 612 = 613 images in G/N of the elements of order 2 from G make up a union of conjugacy classes. We get a contradiction. Similarly if $G/N \cong PSL(2,49).2_2$ or $PSL(2,49).2_3$, we can get a contradiction. Hence no such group G exists. If $G/N \cong PSL(2,49)$, then $|G| = 2^4 \times 3 \times 25 \times 49$, $|G| = 2^5 \times 3 \times 25 \times 49$ or $|G| = 2^6 \times 3 \times 25 \times 49$. If $|G| = 2^4 \times 3 \times 25 \times 49$, then N = 1 and $G \cong PSL(2,49)$. If $|G| = 2^5 \times 3 \times 25 \times 49$, then |N| = 2. Similar to the above discussion we get a contradiction. Let $|G| = 2^6 \times 3 \times 25 \times 49$, then |N| = 4. Consider the action of G on N by conjugation. The kernel is $C_G(N)$,

and $G/C_G(N)$ is isomorphic to a subgroup of Aut(N). Here N has order 4, so Aut(N) is isomorphic to either $Aut(C_4) = C_2$ or $Aut(V_4) = S_3$. In particular, $|G/C_G(N)|$ is at most 6. But also $C_G(N)$ contains N, since N is abelian, and then since G/N is PSL(2,49), which is simple and has order greater than 6, it follows that $|G/C_G(N)| = 1$. Thus $G = C_G(N)$, so N is central. Now we know that N is central in G, if x has order 2 in G, and lies outside N, then Nx is one of the 1225 elements of order 2 in PSL(2,49)=G/N. Choose any such x, then if Ny is any element of order 2 in G/N, then Ny is conjugate to Nx, so Ny = $(Ng)^{-1}Nx(Ng) = N(g^{-1}xg)$ for some g in G, so $Ny = \{a(g^{-1}xg) : a \in N\}$, and in particular, we find that Ny contains at least two elements of order 2. Hence G has at least $2 \times 1225 = 2450$ elements of order 2, a contradiction. Thus the proof is completed.

References -

- 1 Conway, J. H, Curtis, R. T, Norton, S. P, Parker, R. A and Wilson, R. A, Atlas of Finite Groups, Oxford, Clarendon, Press, 1985.
- 2 Frobenius, G, Verallgemeinerung des sylowschen satze, Berliner sitz, (1895), 981-993.
- 3 Hall, M, The Theory of Groups, Macmillan, New York, 1959.
- 4 Herzog, M, On finite simple groups of order divisible by three primes only, J. Algebra, 120(10) (1968), 383-388.
- 5 Khalili Asboei, A and Slalehi Amiri, S. S. A new characterization of PSL(2, 25), Int. J. group theory, 1 (2012), 15-19.
- 6 Khatami, M, Khosravi, B and Akhlaghi, Z, A new characterization for some linear groups, Monatsh Math, 163 (2009), 39-50.
- 7 Miller, G, Addition to a theorem due to Frobenius, Bull Am Math Soc, 11 (1904), 6-7.
- 8 Shao, C. G, Shi, W and Jiang, Q, Characterization of simple K_4 -groups, Front Math China, **3** (2008), 355-370.
- 9 Shen, R, Shao, C. G, Jiang, Q, Shi, W and Mazurov, V, A New Characterization of A₅, Monatsh Math, 160 (2010), 337-341.
- 10 Shi, W, On simple K_4 -groups, Chinese Science Bull, **36** (17) (1991), 1281–1283. (Chinese)