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Abstract Let G be a finite group and 7. (G) be the set of element orders of G. Let k € 7.(G) and my,
be the number of elements of order k in G. Set nse(G):={my|k € 1.(G)}. In this paper, we prove that
if G is a group such that nse(G) = nse(PSL(2,49)), then G = PSL(2,49).
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1 Introduction

If n is an integer, then we denote by m(n) the set of all prime divisors of n. Let G be a finite group.
Denote by m(G) the set of primes p such that G contains an element of order p. Also the set of element
orders of G is denoted by 7.(G). A finite group G is called a simple K, —group, if G is a simple group
with |7(G)| = n. Set m;=m;(G)=|{g € G| the order of g is ¢}|. In fact, m; is the number of elements of
order i in G, and nse(G) := {m;|i € m.(G)}, the set of sizes of elements with the same order. Throughout
this paper, we denote by ¢ the Euler totient function. If G is a finite group, then we denote by P, a
Sylow g—subgroup of G and ny(G) is the number of Sylow g—subgroup of G, that is ny(G)=|Syly(G)|.
All further unexplained notations are standard and refer to [1], for example. In [8], it is proved that
all simple K4—groups can be uniquely determined by nse(G) and |G|. But, in [9], it is proved that the
groups Ay, As and Ag, and in [6], the groups PSL(2, ¢) for ¢ € {7, 8, 11, 13} are uniquely determined by
only nse(G). In [6], the authors gave the following problem:

Problem: Let G be a group such that nse(G) = nse(PSL(2,q)), where q is a prime power. Is G
isomorphic to PSL(2,q)?

In [5] we gave a positive answer to this problem and show that the group PSL(2, ¢) is characterizable
by only nse(G) for ¢ = 25. In this paper, we give a positive answer to this problem for ¢ = 49. In fact

the main theorem of our paper is as follow:

Main Theorem: Let G be a group such that nse(G) = nse(PSL(2,49)), then G = PSL(2,49).
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2 Preliminary Results

In this section we bring some preliminary lemmas to be used in the proof of main theorem.

Lemma 2.1. [3] Let G be a finite solvable group and |G| = m - n, where m = pi*..p%, (m,n) = 1.
Let m = {p1,...,pr} and hy, be the number of m— Hall subgroups of G. Then h,, = q?l...qsﬁS, satisfies the
following conditions for all i € {1,2,...,s}:

1. qiﬁi =1 (mod p;), for some p;.
2. The order of some chief factor of G is divisible by qzﬁl

Lemma 2.2. [4] If G is a simple K3z—group, then G is isomorphic to one of the following groups: As,
Ag, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3) or PSU(4, 2).

Lemma 2.3. [10] Let G be a simple Ky-group. Then G is isomorphic to one of the following groups:
(1) A7, Ag, Ag, Ajp.

(2) M1, M1, Js.

(3) (a) La(r), where 1 is a prime and satisfies 7> —1 = 2¢-3% . v¢ witha > 1,b>1, ¢>1,v >3, is a
prime;

(b) La(2™), where satisfies 2™ — 1 = u, 2™ + 1 = 3t°, with m > 2, u, t are primes, t > 3, b > 1; (c)
Lo(3™), where m satisfies 3™ +1 = 4t, 3™ — 1 = 2u® or 3™ + 1 = 4t°, 3™ — 1 = 2u, with m > 2, u, t
are odd primes, b > 1, ¢ > 1;

(d) L2(16), L2(25), L2(49), L2(81), L3(4), L3(5), L3(7), L3(8), L3(17), L4(3), S1(4), S4(5), Sa(7), S4(9),
S6(2), OF (2), G2(3), Us(4), Us(5), Us(7), Us(8), U3(9), Ua(3), Us(2), Sz(8), Sz(32), *Da(2), 2F4(2)".

Lemma 2.4. [8] Let G be a finite group, P € Syl,(G), where p € n(G). Let G have a normal se-
ries KILLG. If P< L and pt|K|, then the following hold:

(1) Noyxe(PK/K) = Na(P)K/K;

(2) |G : Ng(P)| = |L : Np(P)|, that is ny(G) = n,(L);

(3) |IL/K : N gk (PK/K)|t = |G : No(P)| = |L : N(P)|, that is ny,(L/K)t = ny(G) = ny(L) for some
positive integer t, and |Ni (P)|t = |K].

Lemma 2.5. [2] Let G be a finite group and m be a positive integer dividing |G|. If L,(G) = {g €
Glg™ =1}, then m | |L, (G)|.

Lemma 2.6. [9] Let G be a group containing more than two elements. Let k € m.(G) and my be
the number of elements of order k in G. If s = sup{mil|k € m.(G)} is finite, then G is finite and
|G| < s(s? —1).

Lemma 2.7. [7] Let G be a finite group and p € w(G) be odd. Suppose that P is a Sylow p—subgroup of

G and n = p*m, where (p,m) = 1. If P is not cyclic and s > 1, then the number of elements of order n
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s always a multiple of p*.

Let G be a group such that nse(G) = nse(PSL(2,49)). By Lemma 2.6, we can assume that G is
finite. Let m,, be the number of elements of order n. We note that m,, = k¢(n), where k is the number
of cyclic subgroups of order n in G. Also we note that if n > 2, then ¢(n) is even. If n € 7.(G), then by

Lemma 2.5 and the above notation we have:

¢(n) | ma

n | Zd\n mq

In the proof of the main theorem, we almost apply (*) and the above comments.

3 Proof of the Main Theorem

Let G be a group, such that nse(G)=nse(PSL(2, 49))={1, 225, 2400, 2450, 4704, 4900, 9800, 23520}.
At first we prove that 7(G) C {2, 3, 5, 7}. Since 1225 € nse(G), it follows that by (), 2 € 7(G) and
mo = 1255. Let 2 # p € ©(G), by (%), p | (1 +m,) and (p — 1) | m,, which implies that p € {3, 5,
7, 11, 29, 43}. If 11 € m.(G), then by (*), mi; = 9800. On the other hand, by (x), we conclude that
if 22 € m.(G), then ma = 9800, 23520, 4900, 2450 or 2400 and 22 | (1 + ms + m11 + mas), which is a
contradiction. That is 22 ¢ m.(G). Thus the group Pi; acts fixed point freely on the set of elements
of order 2, and |Pi1| | mz, which is a contradiction. Hence 11 ¢ 7(G) and similarly we can prove that
29 and 43 & w(G). Therefore w(G) C {2, 3,5, 7}. If 3, 5 and 7 € 7(G), then m3 = 2450, ms = 4704
and m7 = 2400, by (x). Now let 3 € n(G), we can see easily that G does not contain any elements of
order 27. Hence exp(P3;) = 3 or 9. Let exp(P3) = 3, by Lemma 2.5, with consider m = |Ps|, we have
|Ps] | (14 mg3) = 2451. Hence |Ps| = 3, then ng = m3/¢(3) = 1225 | |G|. Now let exp(Ps) = 9, by (%)
we have mg = 2400 or 4704. By Lemma 2.5, |P3| | (1 + m3 + mg), then |P3| = 9 or 27. If |P3| = 9,
then n3 = mg/$(9) = 400 or 784 and if | P3| = 27, then by Lemma 2.7, 9 | mg, which is a contradiction.
Therefore if 3 € 7(G), then 5 € 7(G). If 5 € 7(G), then we can see easily that G does not contain any
elements of order 125. Hence exp(Ps) = 5 or 25. Let exp(Ps) = 5, by Lemma 2.5, |P5| | (1 +ms) = 4705.
Hence |Ps| = 5, then ns = ms/¢(5) = 1176 | |G|. Now let exp(Ps) = 25, by (*) we have mas = 23520.
By Lemma 2.5, |Ps| | (14+ms5 + mas) = 28225, then |Pas| = 25. Thus ns = mas/¢(25) = 1176. Therefore
if 5 € 7(G), then 3 and 7 € 7(G). By the above discussion in follow, we show that 7(G) could not be the
sets {2} and {2, 7}, and so 7(G) must be equal to {2, 3, 5, 7}.

Case a. Let 7(G) = {2}, then 7.(G) C {1, 2, 22, ..., 26}. Since nse(G) has eight elements and

|7e(G)| < 7, which is a contradiction. Therefore this case impossible.
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Case b. Let 7(G) = {2, 7}. By (x), ™ & 7.(G), then we have exp(P;) = 7, 49 or 343. If exp(P;) = 7,
then |P;| | (1 + m7) = 2401. Hence |P;| | 74 If |P;| = 7, then n; = my/¢(7) = 400 | |G|, since
5 ¢ w(G) we get a contradiction. If |P;| = 49, then |G| = 2™ x 49 = 49000 + 2400k, + 2450ks + 4704k3 +
4900k4 + 9800ks + 23520k, where m, ky, ko, k4, k3, ks and kg are non-negative integers. Since 7.(G) C
{1,2,922, 23 21,25 2% (J {7, Tx 22, ..., 7 x 25}, then 0 < k1 + ko + ks + kq + ks + kg < 5. There-
fore 49000 < |G| < 23520 x 5 + 49000, then m = 10 or 11. If m = 10, then 1176 = 2400k, + 2450ks +
4704k3+ 4900k, 4+ 9800k5 + 23520k¢. It is easy to check that the equation has no solution. If m = 11, then
51352 = 2400k +2450ke +4704ks+4900k4+9800k5423520k¢. It is easy to check that the equation has no
solution. If |P;| = 343, then |G| = 2™ x 343 = 49000+2400k1+2450ka+4704k35+4900k4+9800k5+23520ks,
then m = 8. Therefore 38808 = 2400k; + 2450ks + 4704ks + 4900k + 9800ks + 23520k, it is easy to
check that the equation has a solution (k1, ko, k3, k4, ks, ke) = (0, 0, 2, 0, 3, 0). By (*), we have if 4,
8 € m.(G), then my = 2450 and mg = 4900. We know that 27 & 7.(G), so exp(P;) = 2, 4, 8, 16, 32
or 64. It known that if exp(P) = 2¢ for 1 < i < 6, then |Py| | (1 + m2 + ...+ mgi), by Lemma 2.5.
Also by (%), mig € {2400, 4704, 23520}, mss € {2400, 4704, 23520} and mes € {2400, 4704, 23520}. By
an easy computer calculation, |Ps| | 27. Since |P| = 28, this is impossible. Similarly if |P;| = 2401 we
can get a contradiction. Now suppose that exp(P;) = 49. By (%), we have my9 = 4704 or 23520. Since
|P7] | (1 4+ m7 + mag) we can conclude that |P7| = 49, then ny = muag/$(49). If myg = 4704, then by
Sylow theorem we get a contradiction. If my9 = 23520, then by 5 & m(G) we get a contradiction. Let
exp(Pr) = 343. We know |P;| = 7™, where n > 3. If | P;| = 343, then by ms43 = 4704 or 23520, we get a
contradiction. If |P;| = 7™ where n > 4, by Lemma 2.7 343 | mg43, which is a contradiction.

Therefore 7(G) = {2, 3, 5, 7}. It known that exp(P3) = 3 or 9, we prove that exp(Ps) # 9. If
exp(P;) = 9, then we know that |P3| =9 and ng = 400 or 784. Since every Sylow 3-subgroups of order
has two elements of order 3, then ms < 400 x 2 or 784 X 2, but ms = 2450, a contradiction. Hence
exp(Ps) = 3, then | P3| = 3. Now we show that G does not contain any element of order 21. Suppose
that 21 € 7.(G) we know that if P and @ are Sylow 3—subgroups of G, then P and @ are conjugate,
which implies that C¢(P) and C(Q) are conjugate in G. Therefore ma; = ¢(21) - n3 - k, where k is the
number of cyclic subgroups of order 7 in Cg(P3). Since ng = 1225, we have 2450 | ma;. On the other
hand we have, 21 | (1 4+ mg3 + m7 + ma1), which is a contradiction. Hence 21 ¢ 7. (G). Since 21 ¢ 7. (G),
then the group Ps acts fixed point freely on the set of elements of order 7, and so |Ps| | m7; = 2400,
which implies that |Ps| = 3. Also the group P; acts fixed point freely on the set of elements of order
3, and so |P7| | ms = 2450, which implies that |P;| | 49. Also we can prove that 15 ¢ 7. (G), then
the group Ps acts fixed point freely on the set of elements of order 3, and so |Ps| | ms = 2450, which
implies that |Ps| | 25. We know that, |P»| | 27, now we prove that if exp(Py) = 8, then |P,| | 27 and if
exp(Py) # 8, then |Py| | 26, Let exp(P2) = 8, then |Py| | (14 ma+my+msg) = 8576, hence | P, | 27. Now
suppose that exp(P,) # 8, by () we can show that 2° & 7.(G), then exp(P2) = 2, 4, 16 or 32. Hence
[Py | (14+ma+...4+mgi), where 1 <14 <5 andi# 3. Also it known that mqe € {2400, 4704, 23520} and
mag € {2400, 4704, 23520}. By an easy computer calculation |Py| | 26. Therefore |G| = 2™ x 3 x 5™ x 7,
where n < 7, m < 2 and k < 2. We claim that G is unsolvable group. Suppose that G is a solvable
group as ny = 1176, then by Lemma 2.1, 49 = 1 (mod 5), which is a contradiction. Hence G is an

unsolvable group. Since G is an unsolvable group such that 3 | |G| but 9 1 |G|, so G has a normal
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series 1 <N < H 4G, where N is a maximal solvable normal subgroup of G and H/N is an unsolvable
minimal normal subgroup of G/N. Then H/N is a non-abelian simple Ks—group or Ky—group. Let
H/N be a non-abelian simple K3—group, then by Lemma 2.2, H/N = A or PSL(2, 7). Let H/N 2 A;,
if Py € Syl3(G), then PsN/N € Syls(H/N) and n3(H/N)t = n3(G) for some positive integer ¢ and 3 1 ¢,
by Lemma 2.4. Since n3(H/N) = ngz(As) = 10, then 1225 = 10¢, which is a contradiction. Now let
H/N =2 PSL(2, 7), if P; € Syl3(G), then PsN/N € Syls(H/N) and ng(H/N)t = nz(G) for some positive
integer t and 3 t ¢, by Lemma 2.4. Since n3(H/N) = n3(PSL(2,7)) = 28, then 1225 = 28¢, which is a
contradiction. Hence H/N is a non-abelian simple K4—group. By Lemma 2.3, H/N =PSL(2,49). Now
set H := H/N =PSL(2,49) and G := G/N. On the other hand:

PSL(2,49) = H =~ HC=(H)/Cx(H) < G/Cx(H) = Ng(H)/Cx(H) < Aut(H).

Let K = {# € G | aN € Cz(H)}, then G/K = G/Cz(H). Hence PSL(2, 49)< G/K <
Aut(PSL(2,49)), then G/K =PSL(2,49), PSL(2,49).21, PSL(2,49).2,, PSL(2,49).25 or PSL(2,49).22.
Therefore |G| = 2™ x 3 x 25 x 49, where n < 7. It known that N < K, as |[K| |8, n < 7 and N is a
maximal solvable normal subgroup of G, then N = K. Hence G/N is isomorphic to one of the groups:
PSL(2,49), PSL(2,49).2,, PSL(2,49).25, PSL(2,49).25 or PSL(2,49).22. Let |G| = 27 x 3 x 25 x 49.
We know that exp(Pp) = 8, then 7.(G) C {1, 2, 4, 8 U {3, 6, 12, 24} U {5, 25, 10, 20, 40, 50,
100, 200} (J {7, 49, 14, 28, 56, 98, 196, 392} |J {35, 175, 245, 1225}. Thus |r.(G)| < 28. Therefore
421400 = 2400k +2450ko +4704k3+4900k4 +9800k5 423520k, where 0 < ki +ko+k3+ka+ks+ke < 20,
it is easy to check that this equation has no solution. Hence |G| = 2" x 3 x 25 x 49 where n < 6,
as 49000 < |G|, then 4 < n < 6. If G/N is isomorphic to PSL(2,49).22 then N = 1. Since
nse(G) #nse(PSL(2,49).22), this is impossible. If G/N is isomorphic to one of the groups: PSL(2,49).21,
PSL(2,49).2, or PSL(2, 49).25, it is clear that |G| = 25 x 3 x 25 x 49 or |G| = 20 x 3 x 25 x 49. If
|G| = 2° x 3 x 25 x 49, then N = 1. Since nse(G) #nse(PSL(2,49).21), nse(G) #nse(PSL(2,49).25) and
nse(G) #nse(PSL(2,49).23), this is impossible. Now let |G| = 25 x 3 x 25 x 49, then |[N| = 2. So G has
a normal subgroup G of order 2, generated by a central involution z. Let G/N =PSL(2,49).2; =PGL(2,
49) and f be the natural homomorphism from G to G/N. Then f takes the identity and the element z
to the identity of G/N, and takes the other 1224 elements of order 2 to (1225 — 1)/2 = 612 elements of
order 2 in G/N = PSL(2, 49).2,. On the other hand, suppose that Nz and Ny are elements of order
2 in the same conjugacy class in G/N =2 PSL(2,49).2;. Then Ny = Na™V9 = N(29) for some ¢ in G,
so y = a? or zz9, and then since zz9 = (29)(29), we have y = z9 or (zz)?. Hence if x has order 2,
then so does y. It follows from this that the images in G/N of elements of order 2 in G form a union of
conjugacy classes in G/N. But that’s impossible. There are two conjugacy classes of elements of order
2 in G/N =~PSL(2,49).2;: one of size 1225 containing elements of order 2 in PSL(2,49), and the other
of size 1176. As 1 + 612 = 613 images in G/N of the elements of order 2 from G make up a union of
conjugacy classes. We get a contradiction. Similarly if G/N = PSL(2,49).2; or PSL(2,49).23, we can
get a contradiction. Hence no such group G exists. If G/N =~PSL(2,49), then |G| = 2% x 3 x 25 x 49,
|G| =25 x3x 25 x49 or |G| = 25 x 3 x 25 x49. If |G| = 2% x 3 x 25 x 49, then N = 1 and G =PSL(2,49).
If |G| = 25 x 3 x 25 x 49, then |N| = 2. Similar to the above discussion we get a contradiction. Let
|G| = 25 x 3 x25x 49, then |N| = 4. Consider the action of G on N by conjugation. The kernel is Cg(N),
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and G/C¢(N) is isomorphic to a subgroup of Aut(N). Here N has order 4, so Aut(N) is isomorphic to
either Aut(Cy) = Cy or Aut(Vy) = Ss. In particular, |G/Cq(N)| is at most 6. But also C(N) contains
N, since N is abelian, and then since G/N is PSL(2,49), which is simple and has order greater than 6, it
follows that |G/Cq(N)| = 1. Thus G = Cg(N), so N is central. Now we know that N is central in G, if x
has order 2 in G, and lies outside N, then Nz is one of the 1225 elements of order 2 in PSL(2,49)= G/N.
Choose any such z, then if Ny is any element of order 2 in G/N, then Ny is conjugate to Nz, so Ny =
(Ng)"'Nz(Ng) = N(g~'zg) for some g in G, so Ny= {a(g 'zg) : a € N}, and in particular, we find
that Ny contains at least two elements of order 2. Hence GG has at least 2 x 1225 = 2450 elements of

order 2, a contradiction. Thus the proof is completed. O
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