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1 Introduction

Eisenhart Problem. In 1923, Eisenhart [11] proposed that if a positive definite Riemannian

manifold conceding a second order parallel symmetric covaraint tensor other than a constant multiple of

the metric tensor, then it is reducible.

In [15], Levy demonstrated that a second order parallel symmetric non-degenerated tensor h in a

space form is proportional to the metric tensor.

On the other hand, Hamilton [12] and Perelman [18] examine the solution of the Poincare conjecture

in dimension 3 have produced a flourishing activity in the research of self similar solutions, or solitons, of

the Ricci flow. The study of the geometry of solitons, in particular their classification in dimension 3, has

been essential in providing a positive answer to the conjecture; however, in higher dimension and in the

complete, possibly non-compact case, the understanding of the geometry and the classification of solitons

seems to remain a desired goal for a not too proximate future. In the generic case a soliton structure on

the Riemannian manifold (M, g) is the choice of a smooth vector field X on M and a real constant λ

satisfying the structural requirement

S +
1

2
LXg = λg, (1.1)

where S is the Ricci tensor of the metric g and LXg is the Lie derivative in the direction of vector field

X . In what follows we shall refer to λ as to the soliton constant. The soliton is called expanding, steady

or shrinking if, respectively, λ > 0, λ = 0 or λ > 0.



M.D. Siddiqi, et al: Eisenhart Problem to Almost η-Ricci Solitons on f -Kenmotsu manifolds

In 1924, Friedmann and Schouten [10] proposed the idea of a semi-symmetric linear connection. A

linear connection ∇ is said to be a semi-symmetric connection if its torsion tensor T is of the type

T (X, Y ) = η(Y )X − η(X)Y, (1.2)

where η is a 1-form.

The connection ∇ is symmetric if the torsion tensor T vanishes, otherwise, it is non-symmetric. The

connection ∇ is metric connection if there is a Riemannian metric g in M such that ∇g = 0, otherwise

it is non-metric. It is well known that a linear connection is symmetric and metric if and only if it is

the Levi-Civita connection. Some properties of semi-symmetric non-metric connection were studied by

Ahmad et al. and Siddiqi et al. in ([1, 2, 22]) respectively.

On the other hand, Sharma [21] initiated the study of this Eisenhart problem in terms of Ricci

solitons in contact Riemannian geometry . After that, many authors extensively discussed about this

concept (for more details see [3, 5, 16, 20, 23]).

In 2009, Cho and Kimura established the conception of η-Ricci soliton [7]. Calin and Crasmareanu

have discussed the η-Ricci soliton on Hopf hypersurfaces in complex space forms [8].

A Riemannian manifold (M, g) is called a η-Ricci soliton if there exist a smooth vector field ξ such

that the Ricci tensor satisfies the following equation [7]

2S + Lξg + 2λg + 2µη ⊗ η = 0, (1.3)

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci tensor and λ, µ are real

constants. If µ = 0, then η-Ricci soliton becomes Ricci soliton.

The concept of an almost Ricci soliton was first introduced by Pigola et al., in 2010 [19]. A Rieman-

nian manifold (Mn, g) is an almost η-Ricci soliton if λ and µ are consider the smooth soliton functions

on M .

η-Ricci solitons in para-Kenmotsu manifolds [3] and Lorentzian para-Sasakian manifolds [5] have

been studied by Blaga et al. In [9] Calin and Crasmareanu evaluate Eisenhart problem in terms of Ricci

soliton on f -Kenmotsu manifolds. Moreover, in [26] Yildiz et al. examined 3-dimensional f -Kenmotsu

with Ricci-soliton. In [6] Chakraborty et al. investigated the Ricci soliton on 3-dimensional β-Kenmotsu

manifold with respect to Schouten-van Kampen connection. Recently, Siddiqi also discussed some axioms

of η-Ricci solitons with certain connections which is closely related to this paper [24, 25]. Motivated by

above these studies in the present paper, we solve the Eisenhart problem to almost η-Ricci solitons in

f -Kenmotsu manifold with a semi-symmetric non-metric connection.
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2 Preliminaries

Let M be a 3-dimensional differentiable manifold with an almost contact metric structure (φ, ξ, η, g)

consisting of a (1, 1) tensor field φ, a vector field ξ, a 1-form η and Riemannian metric g such that

φ2 = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, , φξ = 0, (2.1)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), η(X) = g(X, ξ), (2.2)

for all X, Y ∈ χ(M). Also, for an almost contact manifold M , it follows that [14]

∇XφY = (∇Xφ)Y + φ(∇XY ), (2.3)

(∇Xη)Y = ∇Xη(Y ) − η(∇XY ). (2.4)

Let R be Riemannian curvature tensor, S Ricci curvature tensor, Q Ricci operator and {e1, e2, ....en} be

orthonormal basis of M . For all X, Y ∈ χ(M) it follow that

S(X, Y ) =

n
∑

i=1

g(R(ei, X)Y, ei), (2.5)

QX = −

n
∑

i=1

(R(ei, X)ei (2.6)

and

S(X, Y ) = g(QX, Y ). (2.7)

If the Ricci tensor S of a f -kenmotsu manifold M satisfies the condition

S(X, Y ) = ag(X, X)Y + bη(X)η(Y ), (2.8)

where a, b are scalars, then M is said to be η-Einstein manifold. If b = 0, then M is called Einstein

manifold. In a 3-dimensional Riemannian manifold the curvature tensor R is defined as

R(X, Y )Z = S(Y, Z)X − g(X, Z)QY + g(Y, Z)QX − S(X, Z)Y (2.9)

−
r

2
[g(Y, Z)X − g(X, Z)Y ]

where S is the Ricci tensor, Q is the Ricci operator and r is the scalar curvature for 3-dimensional

manifold M .

On the other hand, let M be an n-dimensional Riemannian manifold with the Riemannian connection

∇. A linear connection ∇̄ on M is said to be a semi-symmetric metric connection if its torsion tensor T̄

of the connection ∇̄ satisfies

T̄ (X, Y ) = η(Y )X − η(X)Y (2.10)

where η is non-zero 1-form and T 6= 0.

Moreover, ∇̄g = 0 then the connection is called a semi-symmetric metric connection. If ∇̄g 6= 0 then

the connection is called a semi-symmetric non-metric connection [10].
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3 f -Kenmotsu manifolds

The concept of f -Kenmotsu manifold, where f is a real constant, appears for the first time in the

paper of Jannsens and Vanhecke [13]. More recently, Olszak and Rosca [17] defined and studied the

f -Kenmotsu manifold by the following formula (3.1), where f is a function on M such that df ∧ η = 0.

Here, η is the dual 1-form corresponding to the characteristic vector field ξ of an almost contact metric

structure on M. The condition df ∧ η = 0 follows in fact following from (3.1) if dimM > 5. This does not

hold in general if dimM = 3.

Let M be a 3-dimensional almost contact manifold. (M, φ, ξ, η, g) is an f -Kenmotsu manifold if the

covariant differentiation of φ satisfies [13],

(∇Xφ)Y = f(g(φX, Y ) − η(Y )φX) (3.1)

where f ∈ C∞(M) such that df ∧ η = 0. If f = β = constant 6= 0, the manifold is said to be an

β-Kenmotsu. If f = 1, then 1-Kenmotsu manifold is also called Kenmotsu manifold. If f2 + f
′

6= 0, then

f -Kenmotsu manifold is said to be regular, where f
′

= ξf [13]. By using (2.1) and (2.2), it can be shown

that

(∇Xη)Y = fg(φX, φY ). (3.2)

From (3.1), we have

∇Xξ = f(X − η(X)ξ). (3.3)

Also from (2.8), in 3-dimensional f -Kenmotsu we have

R(X, Y )Z = (
r

2
+ 2f2 + 2f

′

)(X ∧ Y ) (3.4)

−(
r

2
+ 3f2 + 3f

′

)[η(X)(ξ ∧ Y )Z + η(Y )(X ∧ ξ)Z]

and

S(X, Y ) = (
r

2
+ 2f2 + 2f

′

)g(X, Y ) − (
r

2
+ 3f2 + 3f

′

)η(X)η(Y ). (3.5)

Thus from (3.5), we get

S(X, ξ) = −2(f2 + f
′

)η(X), (3.6)

where r is the scalar curvature of M and f
′

ξ.

Using (3.4) and (3.5), we obtain

R(X, Y )ξ = −(f2 + f
′

)[η(Y )X − η(X)Y ], (3.7)

R(ξ, X)ξ = −(f2 + f
′

)[η(X)ξ − X ], (3.8)

QX = (
r

2
+ 2f2 + 2f

′

)X − (
r

2
+ 3f2 + 3f

′

)η(X)ξ. (3.9)
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4 f -Kenmotsu manifolds with a semi-symmetric non-metric connection

Let ∇̄ be a linear connection and ∇ be a Riemannian connection of an f -Kenmotsu manifold M .

This ∇̄ linear connection defined by

∇̄XY = ∇XY + η(Y )X (4.1)

where η-1-form and any vector fields X, Y ∈ χ(M), denotes the semi-symmetric non-metric connection

[10].

For f -Kenmotsu manifold with the semi-symmetric non-metric connection, using (2.2), (3.1) and (4.1)

we have

∇̄Xφ)Y = f(g(φX, φY )ξ − 2η(X)φX) (4.2)

for any vector fields X, Y ∈ χ(M), where φ is (1, 1) tensor filed, ξ is a vector filed, η is a 1-form and f∞

such that df ∧ η = 0. As consequence of df ∧ η = 0, we get

df = f
′

and X(f) = f
′

η(X) (4.3)

where f
′

= ξf . If f = β = constant 6= 0, then the manifold is a β-Kenmotsu [14]. If f = 0, then

the manifold is cosymplectic manifold. An f -Kenmotsu manifold with a semi-symmetric non-metric

connection is said to be regular if f2 + f + 2f
′

6= 0.

By using (2.1) and (4.2), we get

∇̄Xξ = f(2X − η(X)ξ). (4.4)

From (2.2), (4.1) and (4.2), we have

(∇̄Xη)Y = fg(φX, φY ). (4.5)

The curvature tensor R̄ of an f -Kenmotsu manifold M with respect to the semi-symmetric non-

metric connection ∇̄ is defined by

R̄(X, Y )ξ = ∇̄X∇̄Y ξ − ∇̄Y ∇̄Xξ − ∇̄[X,Y ]ξ. (4.6)

With the help of (4.1), (4.4) and (3.3), we get

∇̄X∇̄Y ξ = X(f)2Y − X(f)η(Y )ξ + 2f∇XY − fXη(Y )ξ − η(Y )f2X (4.7)

+η(Y )η(X)f2ξ + fη(Y )X

and

−∇̄[X,Y ]ξ = −2f∇XY − 2fη(Y )X + 2f∇Y X (4.8)

+2fη(X)Y + fXη(Y )ξ − fY η(X)ξ.
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Using (4.7) and (4.8) in (4.5), we get

R̄(X, Y )ξ = X(f)2Y − X(F )η(Y )ξ − Y (f)2X + Y (f)η(X)ξ + f2η(X)Y (4.9)

−f2η(Y )X + fη(X)Y − fη(Y )X.

using (4.3) in (4.9), it follows that

R̄(X, Y )ξ = −(f2 + f + 2f
′

)[η(Y )X − η(X)Y ]. (4.10)

From (4.10), we have

R̄(ξ, Y )ξ = −(f2 + f + 2f
′

)[η(Y )ξ − Y ], (4.11)

and

R̄(X, ξ)ξ = −(f2 + f + 2f
′

)[X − η(X)ξ]. (4.12)

Taking the inner product with Z in (4.10), we have

g(R̄(X, Y )ξ, Z) = −(f2 + f + 2f
′

)[η(Y )g(X, Z) − η(X)g(Y, Z)] (4.13)

which is used in the proof of the following lemma.

Lemma 4.1. Let M be a 3-dimensional f -Kenmotsu manifold with a semi-symmetric non-metric con-

nection, S̄ Ricci curvature tensor and Q̄ Ricci operator. Then

S̄(X, ξ) = −2(f2 + f + 2f
′

)η(X), (4.14)

Q̄ξ = −2(f2 + f + 2f
′

)ξ. (4.15)

Proof. Contracting with Y and Z in (4.13) and taking summation over i = 1, 2....n, from (2.5) expression

the proof (4.14) is completed. then also using (2.7) and (2.1) in (4.14), the proof of (4.15) is completed.

Lemma 4.2. Let M be a 3-dimensional f -Kenmotsu manifold with a semi-symmetric non-metric connec-

tion, r scalar curvature tensor, S̄(X, Y ) Ricci curvature tensor and Q̄X Ricci operator. Then it follows

that

S̄(X, Y ) = (
r

2
+ f2 + f + 2f

′

)g(X, Y ) − (
r

2
+ 3f2 + 3f + 6f

′

)η(X)η(Y ) (4.16)

and

Q̄X = (
r

2
+ f2 + f

′

)X − (
r

2
+ 3f2 + 3f

′

)η(Y )ξ. (4.17)

Proof. Contracting (4.12) with Y , we get

g(R̄(X, ξ)ξ, Y ) = −(f2 + f + 2f
′

)(g(X, Y ) − η(X)η(Y )) (4.18)

Using (4.14), putting X = ξ, Y = X, Z = Y in (2.9) and contracting with ξ, we obtain

R̄(ξ, X, Y, ξ) = S̄(X, Y ) − 2(f2 + f + 2f
′

)g(X, Y ) −
r

2
(g(X, Y ) − η(X)η(Y )) (4.19)
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+2(f2 + f + 2f
′

)η(X)η(Y ) + 2f2 + f + 2f
′

)η(X)η(Y ).

With the help of (4.18) and (4.19) proof of (4.16) is completed.

Using (4.16) and (2.7), its verified that

g(Q̄X − [(
r

2
+ f2 + f + 2f

′

)X − (
r

2
+ 3f2 + 3f + 6f

′

)η(X)ξ, Y ] = 0. (4.20)

Since Y 6= 0 in (4.20), the proof of (4.17) is completed.

5 Parallel symmetric second order tensors and an almost η-Ricci solitons on

f-Kenmotsu manifolds with a semi-symmetric non-metric connection

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel with respect to the

semi-symmetric non-metric connection ∇̄ that is ∇̄h = 0. Applying the Ricci commutation identity [10].

∇̄2h(X, Y ; Z, W ) − ∇̄2h(X, Y ; W, Z) = 0, (5.1)

we obtain the relation

h(R̄(X, Y )Z, W ) + h(Z, R̄(X, Y )W ) = 0. (5.2)

Realacing Z = W = ξ in (5.2) and using (4.10) and also use the symmetry of h, we have

−(f2 + f + 2f
′

)[η(Y )h(X, ξ) − η(X)h(Y, ξ)] − (f2 + f + 2f
′

)[η(Y )h(ξ, ξ) − h(Y, ξ)] (5.3)

Putting X = ξ in (5.3) and by virtue of (2.1), we obtain By using regularity condition in (5.4), we have

−(f2 + f + 2f
′

)[η(Y )h(ξ, ξ) − h(Y, ξ)] = 0. (5.4)

Suppose −(f2 + f + 2f
′

) 6= 0, it results

h(Y, ξ) = η(Y )h(ξ, ξ). (5.5)

Now, we can call a regular f -Kenmotsu manifold with semi-symmetric non-metric connection with

−(f2 + f + 2f
′

) 6= 0, where regularity, means the non-vanishing of the Ricci curvature with respect to

the generator of f -Kenmotsu manifold with semi-symmetric non-metric connection.

Differentiating (5.5) covariantly with respect to X , we have

(∇̄Xh)(Y, ξ) + h(∇̄XY, ξ) + h(Y, ∇̄Xξ) = [g(∇̄XY, ξ) + g(Y, ∇̄Xξ)]h(ξ, ξ) (5.6)

+η(Y )[(∇̄Xh)(Y, ξ) + 2h((∇̄Xξ, ξ)].

By using the parallel condition ∇̄h = 0, η(∇̄Xξ) = 0 and by the virtue of (5.5) in (5.6), we get

h(Y,∇Xξ) = g(Y,∇Xξ)h(ξ, ξ).

Now using (4.4) in the above equation, we get

h(X, Y ) = g(X, Y )h(ξ, ξ), (5.7)

which together with the standard fact that the parallelism of h implies that h(ξ, ξ) is a constant, via

(5.6). Now by considering the above equations, we can gives the conclusion:
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Theorem 5.1. Let (M, φ, ξ, η, g) be an f -Kenmotsu manifold with semi-symmetric non-metric connection

with non-vanishing ξ-sectional curvature and endowed with a tensor field h ∈ (T 0
2 (M)) which is symmetric

and φ-skew-symmetric. If h is parallel with respect to ∇̄ then it is a constant multiple of the metric tensor

g.

Corollary 5.2. A locally Ricci symmetric regular f -Kenmotsu manifold with semi-symmetric non-metric

connection is an quasi-Einstein manifold.

Corollary 5.3. A locally Ricci semi-symmetric regular f -Kenmotsu manifold with semi-symmetric non-

metric connection is an quasi-Einstein manifold.

Definition 5.4. Let (M, φ, ξ, η, g) be an be an f -Kenmotsu manifold with semi-symmetric non-metric

connection . Consider the equation [7]

Lξg + 2S̄ + 2λg + 2µη ⊗ η = 0, (5.8)

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci curvature tensor field of

the metric g, and λ and µ are smooth functions. Writing Lξg in terms of semi-symmetric non-metric

connection ∇, we obtain:

2S̄(X, Y ) = −g(∇̄Xξ, Y ) − g(X, ∇̄Y ξ) − 2λg(X, Y ) − 2µη(X)η(Y ), (5.9)

for any X, Y ∈ χ(M).

The data (g, ξ, λ, µ) which satisfy the equation (5.8) is said to be η- Ricci soliton on M [6] ; in

particular if µ = 0 (g, ξ, λ) is almost Ricci soliton [6] and its called shrinking, steady or expanding

according as λ < 0, λ = 0 or λ > 0 respectively.

Now, from (4.4) , the equation (5.9) becomes:

S̄(X, Y ) = −(2f + λ)g(X, Y ) + (f − µ)η(X)η(Y ). (5.10)

The above equations yields

S̄(X, ξ) = −(f + λ + µ)η(X) (5.11)

Q̄X = −(2f + λ)X + (f − µ)ξ (5.12)

Q̄ξ = −(f + λ + µ)ξ (5.13)

r̄ = −λn − (n − 1)f − µ, (5.14)

where r is the scalar curvature. Off the two natural situations regrading the vector field V : V ∈ Spanξ

and V ⊥ξ, we investigate only the case V = ξ.

Our interest is in the expression for Lξg + 2S̄ + 2µη ⊗ η. A direct computation gives

Lξg(X, Y ) = 2f [2g(X, Y ) − η(X)η(Y )]. (5.15)

In 3-dimensional f -Kenmotsu manifold with a semi-symmetric non-metric connection the Riemannian

curvature tensor is given by

R̄(X, Y )Z = g(Y, Z)Q̄X − g(X, Z)Q̄Y + S̄(Y, Z)X − S̄(X, Z)Y (5.16)
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−
r

2
[g(Y, Z)X − g(X, Z)Y ],

Putting Z = ξ in (5.16) and using (4.10), (4.14) and (4.17) for 3-dimensional f -Kenmotsu manifold with

a semi-symmetric non-metric connection, we get

−(f2 + f + 2f
′

)[η(Y )X − η(X)Y ] = η(Y )[(
r

2
+ f + 2f

′

)X − (
r

2
+ 3f2 + 3f

′

)η(X)ξ] (5.17)

−η(X)[(
r

2
+ f + 2f

′

)Y − (
r

2
+ 3f2 + 3f

′

)η(Y )ξ] − 2(f2 + f + 2f
′

)η(Y )X

+2(f2 + f + 2f
′

)η(X)Y −
r

2
[η(Y )X − η(X)Y ]

Again, putting Y = ξ in the (5.17) and using (2.2) and condition of regularity we obtain

Q̄X =
[r

2
+ (

r

2
+ f2 + f

′

) − (f2 + f + 2f
′

)
]

X (5.18)

+
[r

2
+ (

r

2
+ f2 + f

′

) − 3(f2 + f + 2f
′

)]η(X)ξ.

From (5.18), we have

S̄(X, Y ) =
[r

2
+ (

r

2
+ f2 + f

′

) − (f2 + f + 2f
′

)
]

g(X, Y ) (5.19)

+
[r

2
+ (

r

2
+ f2 + f

′

) − 3(f2 + f + 2f
′

)]η(X)η(Y ).

Equation (5.19) shows that a 3-dimensional f -Kenmotsu manifold with a semi-symmetric non-metric

connections η-Einstein.

Next, we consider the equation

h(X, Y ) = (Lξg)(X, Y ) + 2S(X, Y ) + 2µη(X)η(Y ). (5.20)

By Using (5.16) and (5.19) in (5.20), we have

h(X, Y ) = (r − 4f − f
′

)g(X, Y ) + (r − 4f + 5f
′

− 2f2)η(X)η(Y ) + 2µη(X)η(Y ) (5.21)

Putting X = Y = ξ in (5.21), we get

h(ξ, ξ) = 2[r + 2f
′

− f2 + µ] (5.22)

Now, (5.7) becomes

h(X, Y ) = 2[r + 2f
′

− f2 + µ]g(X, Y ). (5.23)

From (5.20) and (5.23), it follows that g is an η-Ricci soliton.

Therefore, we can state as:

Theorem 5.5. Let (M, φ, ξ, η, g) be a 3-dimensional f -Kenmotsu manifold with a semi-symmetric non-

metric connection, then (g, ξ, µ) yields an almost η-Ricci soliton on M .
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Let V be pointwise collinear with ξ. i.e., V = bξ, where b is a function on the 3-dimensional

f -Kenmotsu manifold with semi-symmetric non-metric connection. Then

g(∇̄Xbξ, Y ) + g(∇̄Y bξ, X) + 2S̄(X, Y ) + 2λg(X, Y ) + 2µη(X)η(Y ) = 0.

or

bg((∇̄Xξ, Y ) + (Xb)η(Y ) + bg(∇̄Y ξ, X) + (Y b)η(X)

+2S̄(X, Y ) + 2λg(X, Y ) + 2µη(X)η(Y ) = 0.

Using (4.4), we obtain

bg(f(2X − η(X)ξ, Y ) + (Xb)η(Y ) + bg(f(2Y − η(Y )ξ, X)

+(Y b)(X) + 2S̄(X, Y ) + 2λg(X, Y ) + 2µη(X)η(Y ) = 0.

which yields

4bfg(X, Y ) − 2bfη(X)η(Y ) + (Xb)η(Y ) (5.24)

+(Y b)η(X) + 2S̄(X, Y ) + 2λg(X, Y ) + 2µη(X)η(Y ) = 0.

Replacing Y by ξ in (5.24), we obtain

(Xb) + (ξb)η(X) + 2bfη(X)− 4(f2 + f + 2f
′

)η(X) + 2λη(X) + 2µη(X)η(Y ). (5.25)

Again putting X = ξ in (5.25), we obtain

ξb = 2(f2 + f + 2f
′

) − bf − λ − µ.

Plugging this in (5.25), we get

(Xb) + 2[2(f2 + f + 2f
′

) − bf − λ + µ]η(X) = 0,

or

db =
{

2(f2 + f + 2f
′

) − bf − λ − µ
}

η. (5.26)

Applying d on (5.26), we get
{

2(f2 + f + 2f
′

) − bf − λ − µ
}

dη. Since dη 6= 0 we have

{

2(f2 + f + 2f
′

) − bf − λ − µ
}

= 0. (5.27)

Equation(5.27) in (5.26) yields b as a constant. Therefore from (5.24), it follows that

S̄(X, Y ) = −(λ + 2bf)g(X, Y ) + (bf − µ)η(X)η(Y ),

which implies that M is of constant scalar curvature for constant f . This leads to the following:

Theorem 5.6. If in a 3-dimensional f -Kenmotsu manifold with a semi-symmetric non-metric connection

the metric g is an almost η-Ricci soliton and V is positive collinear with ξ, then V is a constant multiple

of ξ and g is an η quasi-Einstein manifold and constant scalar curvature provided bf is a constant.
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6 Example of a 3-dimensional f-Kenmotsu manifold with a semi-symmetric-

non-metric connection:

Consider the three dimensional manifold M =
{

(x, y, z) ∈ R
3 |z 6= 0} , where (x, y, z) are the Carte-

sian coordinates in R
3 and let the vector fields are

e1 = z2 ∂

∂x
, e2 = z2 ∂

∂y
, e3 =

∂

∂z
,

where e1, e2, e3 are linearly independent at each point of M . Let g be the Riemannain metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,

Let η be the 1-form defined by η(X) = g(X, e3) for any vector field X on M ,

and φ be the (1,1) tensor field defined by φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0. Then by using the

linearity of φ and g, we have φ2X = −X +η(X)ξ, with ξ = e3. Further g(φX, φY ) = g(X, Y )−η(X)η(Y )

for any vector fields X and Y on M . Hence for e3 = ξ, the structure defines an (δ)-almost contact structure

in R3.

Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z, X) − Zg(X, Y ) − g(X, [Y, Z])

−g(Y, [X, Z]) + g(Z, [X, Y ]),

which is know as Koszul’s formula.

∇ei
ei = −

2

z
e3, ∇eie3 = −

2

z
ei, i = 1, 2 (6.1)

∇e1
e2 = ∇e2

e1 = ∇e3
e1 = ∇e3

e2 = ∇e3
e3 = 0

Here ∇ be the Levi-Civita connection with respect to the metric g , then we have

[e1, e2] = 0, [e1, e3] = − 2
z
e1, [e2, e3] = − 2

z
e2.

Now consider at this example for semi-symmetric non-metric connection from (4.1) and (5.28),

∇̄eiei = −
2

z
e3,∇ei

e3 = −
2

z
ei, i = 1, 2 (6.2)

∇eiej = ∇̄e3ei = 0, ∇̄e3e3 = e3

where i 6= j. We know that

R̄(X, Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z. (6.3)

By using (5.29) and (5.30) we obtain the components of the Riemann and the Ricci curvature tensor

fields are computed as follows:

R̄(ei, e3)e3 = (1 −
6

Z2
)ei, R̄(ei, ej)e3 = 0 (6.4)
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R̄(ei, ej)ej = (
2

z
−

4

z2
)ei, R̄(ei, e3)ej = 0, R̄(e3, ei)ei = (

2

z
−

6

z2
)e3

where i 6= j = 1, 2.

From the equation (5.31) we can also obtain

R̄(e1, e3)e3 = (1 −
6

Z2
)e1, R̄(e2, e3)e3 = (1 −

6

Z2
)e1, R̄(e1, e2)e2 = (

2

z
−

4

Z2
)e1, (6.5)

R̄(e3, e1)e1 = (
2

z
−

6

Z2
)e3, R̄(e3, e2)e2 = (

2

z
−

6

Z2
)e3, R̄(e2, e1)e1 = (

2

z
−

4

Z2
)e3,

Therefore, we have

S̄(ei, ei) = S̄(e2, e2) = −
10

z2
+

2

z
+ 1, i = 1, 2, S(e3, e3) = −

12

z2
+

4

z
(6.6)

S̄(e1, e1) = S̄(e2, e2) = −
10

z2
+

2

z
+ 1 (6.7)

for i = 1, 2. Hence M is also an Einstein manifold. In this case, from (5.9) (ei, ei) follows, for

f [2g(ei, ei) − η(ei)η(ei)] + 2S̄(ei, ei) + 2λg(ei, ei) + 2µη(ei)η(ei)

2f(2 − δij) + 2(−
10

z2
+

2

z
+ 1) + 2λ + 2µδij

for all i ∈ {1, 2, 3}. Therefore, we have λ = (2f − 2
z
− 5

z2 + 1) and µ = (3f − 4
z
− 5

z2 + 1), the he

data (g, ξ, λ, µ) is an almost η-Ricci soliton on (M, φ, ξ, η, g) with respect to a semi-symmetric non-metric

connection is expanding.
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