
A new characterization of finite groups

in which every element has prime power

order ∗

Rulin Shen1 Wujie Shi2 Xuan Zou1

1Department of Mathematics, Hubei Minzu University,

Enshi, Hubei Province, 445000, P. R. China
2Department of Mathematics, Chongqing University of Arts and Sciences

Yongchuan, Chongqing, 402160, P. R. China

Abstract

In this paper, we give a new characterization of finite groups in which
every element has prime power order, and answered the problem 18.112
in “Unsolved Problem in Group Theory”.
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A group is called a CP-group if every element of the group has prime power
order. This definition is equivalent to the statement that the centralizer of every
nontrivial p-element is a p-group for all p. This is a generalization of groups
of prime power order. A group is called a Cpp-group if the centralizer of every
nontrivial p-element is a p-group for a fixed p. Examples of CP-groups include
p-groups, where p is a prime, and Tarski groups, which are simple groups whose
proper subgroups have prime order.

In 1957, G. Higman first studied the finite CP-groups [4]. He showed that a
finite solvable CP-group is a split extension of its Fitting subgroup, which must
clearly be a p-group, by a complement acting fixed-point-freely. Moreover, the
order of a finite solvable CP-group is divisible by at most two primes. In the
same article, Higman studied the structure of finite non-solvable CP-groups
and showed that such a group has a non-abelian simple section which largely
determines its structure. M. Suzuki classified finite simple CP-groups in his
celebrated work [9], finding that only eight finite simple CP-groups exist. R.
Brandl [2] and W. Shi, W. Yang [7] continued this line of inquiry by classifying
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finite non-solvable CP-groups. For the special finite CP-groups, W. Shi, W.
Yang [8] and M. Deaconescu etc.(see [1] and [6]) classified the finite groups with
all elements of prime order except the identity.

In [7], the authors proved that a finite CP-group G satisfies the following
property:

Property A: For all subgroups H of G if (|H|, d) = 1(d > 1), then |H|
divides the number of elements of order d in G.

Proof. Let H act on the set of elements of order d in G by conjugation
a → h−1ah, where o(a) = d and h ∈ H. We get the H-conjugate class C =
{ah|∀a ∈ H}. Since G is a CP-group , CH(a) = 1 and |C| = |H|, the conclusion
holds.

Then the second author of this paper asked whether the inverse is true, that
is, if a finite group G satisfies Property A, is G a CP-group? This question
is collected in “Unsolved Problem in Group Theory (Edition 18)” [5], which is
Problem 18.112. In this short paper, we give a positive answer to this problem.

Next we denote by π a set of primes and π(n) the set of all primes of the
integer n (n > 1). Denote by π′ the complement of the set π, and nπ the π-part
of the integer n, i.e., the largest divisor of n including all prime divisors of π.
Note that the element x can write x = xπxπ′ such that xπ and xπ′ are π- and
π′-elements respectively. Moreover, such resolution is unique. All groups in the
following are considered finite. Since Sylow subgroups exist always, we have
Property A is equivalent to the following property:

Property B: For all Sylow p-subgroups P of G if (|P |, d) = 1(d > 1), then
|P | divides the number of elements of order d in G.

First, we cite a well known result due to Frobenius as follows.

Lemma 1[[3], Theorem 9.1.2]. Let G be a finite group and n a divisor of
|G|, and let fG(n) = |{g ∈ G|gn = 1}|. Then fG(n) is a multiple of n.

Before starting our main result, we next give a lemma, which is the gener-
alization of the result of Weisner [10].

Lemma 2. Let G be a finite group and g an element of G. Suppose that the
order of x is n and denote by gG the conjugacy class including g.

(1) if gG = {g} and m assumes all values prime to n, then the number of
solutions of the equations xm = g is φ(n)fG(|G|π(n)′), where φ is Euler function.

(2) if gG = {g} and m assumes all values not prime to n, suppose that the
conjugacy classes of π(n)-elements satisfied xm = g are gG

1 , gG
2 , · · · , gG

l , then the
number of solutions of the equations xm = g is

∑l
i=1 |gG

i |fCG(gi)(|CG(gi)|π(n)′).
(3) let |gG| > 1 and the number of solutions of the equation xm = g in the

subgroup CG(g) be µ(CG(g)) for all m. Then the number of elements whose
power are in the conjuagcy class gG is |gG|µ(CG(g)).

Proof. Let k be the greatest divisor of |G| that is prime to n, that is k =
|G|π(n)′ . First we assume that gG = {g}, and so g is a center element of G.
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(1) the case of (m,n) = 1. So there exist integers m′ and n′ such that
mm′ + nn′ = 1. Since xm = g, it leads to xm

π(n)x
m
π(n)′ = g and then xm

π(n) = g

and xm
π(n)′ = 1. Furthermore xπ(n) = xmm′+nn′

π(n) = gm′
and (m′, n) = 1. It

follows that the solution set of the equation xm = g is the set {gm′
z|(m′, n) = 1

and z is a π(n)′-element}. On the other hand, the number of π(n)′-elements
of G is fG(k), and so the number of solutions of the equation of xm = g is
φ(n)fG(k).

(2) the case of (m,n) 6= 1. Similarly, we can resolve x into the π(n)-part and
π(n)′-part, that is x = xπ(n)xπ(n)′ , and then xm

π(n) = g and xπ(n)′ = 1. Hence
the solution of equation xm = g can be only expressed by the form xπ(n)z,
where xm

π(n) = g and z is a π(n)′-element of CG(xπ(n)). Next suppose that the
conjugacy classes of π(n)-elements satisfied xm = g are gG

1 , gG
2 , · · · , gG

l . Since
the number of solutions of the equation xm = g generated by the conjugacy
class gG

i is |gG
i |fCG(gi)(|CG(gi)|π(n)′), it follows that the number of all solutions

is
∑l

i=1 |gG
i |fCG(gi)(|CG(gi)|π(n)′).

(3) Let gG =
⋃h

i=1 C(gi) where C(gi) = {gn1
i , gn2

i , · · · , gnr
i } for 1 ≤ i ≤ h

and (ni, n) = 1 such that any two elements in the same subset C(gi) are powers
of each other, whereas no element is a power of an element in another subset
C(gj) for i 6= j. Without loss of generalization, we set n1 = 1. Note that if the
power of the solution x of the equation xm = g is in the C(gi), then a power of
x cannot be in the C(gj) for i 6= j. Otherwise, if xm = gnt

i and xm′
= gnl

j , then
xm and xm′

are of same order n, so that each is a power of the other, whence
i = j. Since each centralizer CG(gi) is a conjugate subgroup of CG(g), the
numbers of elements whose power includes in C(gi) are same. Let the number
of elements of CG(gi) whose power in C(gi) be µ(CG(gi)). So the number of
elements whose power are in the conjuagcy class gG is |gG|µ(CG(g)). ¤

From the above Lemma 1 and Lemma 2, we can get the following corollary
which is first given by Weisner (Theorem 3, [10]).

Corollary. The number of elements whose orders are multiples of n (n > 1) is
a multiple of |G|π(n)′ .

Now we give our main result as follows.

Theorem. Let G be a finite group. Then the following conditions are equivalent:
(1) G is a CP -group;
(2) For every divisor d (d > 1) of |G| and for every subgroup H of G of

order coprime to d, the order |H| divides the number of elements of G of order
d;

(3) For every divisor d (d > 1) of |G|, the number of elements of order d is
divided by the number |G|π(d)′ .

Proof. It’s obvious that the (2) and (3) are equivalent. Next we prove the
item (1) is equivalent to the (3). From Property A, we have (1) ⇒ (3). Next
we prove (3) ⇒ (1). Denote by sn the number of elements whose orders are
n. Suppose that for every divisor d (d > 1) of |G|, the number of elements of
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order d is divided by the number |G|π(d)′ . We will prove G is a CP-group. Now
we assume that G has an element of order pq and p 6= q, that is spq > 0. By
Corollary, since p 6= q, we have

|G|q
∣∣ |G|p′

∣∣ ∑
p|d sd (this is the number of all elements whose order is a mul-

tiple of p), and∑
p|d sd = (

∑
pq|d sd +

∑
p|d,q-d sd). (we divide these elements into two parts,

one is the set of all elements whose order can be divided by pq, the other cannot
divided by pq). Then

|G|q
∣∣ ∑

pq|d
sd +

∑

p|d,q-d
sd. (∗)

Next we consider
∑

p|d,q-d sd, i.e. the number of all elements whose order
can not be divided by pq but can be divided by p. In view of our hypothesis(the
condition (3)), if q - d, then |G|q

∣∣|G|π(d)′
∣∣sd, and so

|G|q
∣∣sd.

It follows that
|G|q

∣∣ ∑

p|d,q-d
sd (∗∗)

By the (∗) and (∗∗) we have |G|q
∣∣ ∑

pq|d sd. Similarly, we have |G|p
∣∣ ∑

pq|d sd.
It follows that

|G|{p,q}
∣∣ ∑

pq|d
sd. (†)

On the other hand, by Corollary, we have

|G|{p,q}′
∣∣ ∑

pq|d
sd. (††)

So by the (†) and (††) we can get

|G|
∣∣ ∑

pq|d
sd,

since
∑

pq|d sd < |G|, and then
∑

pq|d sd = 0, so spq = 0, which contradicts the
hypothesis that there exists an element of order pq. Therefore G is a CP-group.
¤

Finally, we pose the following problem: the above theorem give a charac-
terization of finite CP-groups using the number of elements and the orders of
subgroups. Is there a similar characteristic property for finite Cpp-groups?
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