A new characterization of finite groups in which every element has prime power order *

Rulin Shen¹ Wujie Shi² Xuan Zou¹

¹Department of Mathematics, Hubei Minzu University, Enshi, Hubei Province, 445000, P. R. China ²Department of Mathematics, Chongqing University of Arts and Sciences Yongchuan, Chongqing, 402160, P. R. China

Abstract

In this paper, we give a new characterization of finite groups in which every element has prime power order, and answered the problem 18.112 in "Unsolved Problem in Group Theory".

Keywords: finite groups, elements of prime power order

2010 Mathematics Subject Classification: 20D45

A group is called a CP-group if every element of the group has prime power order. This definition is equivalent to the statement that the centralizer of every nontrivial *p*-element is a *p*-group for all *p*. This is a generalization of groups of prime power order. A group is called a C_{pp} -group if the centralizer of every nontrivial *p*-element is a *p*-group for a fixed *p*. Examples of CP-groups include *p*-groups, where *p* is a prime, and Tarski groups, which are simple groups whose proper subgroups have prime order.

In 1957, G. Higman first studied the finite CP-groups [4]. He showed that a finite solvable CP-group is a split extension of its Fitting subgroup, which must clearly be a *p*-group, by a complement acting fixed-point-freely. Moreover, the order of a finite solvable CP-group is divisible by at most two primes. In the same article, Higman studied the structure of finite non-solvable CP-groups and showed that such a group has a non-abelian simple section which largely determines its structure. M. Suzuki classified finite simple CP-groups in his celebrated work [9], finding that only eight finite simple CP-groups exist. R. Brandl [2] and W. Shi, W. Yang [7] continued this line of inquiry by classifying

^{*}Project supported by NSFC (No.11201133, No. 11171364, No. 11271301) and the Innovation Foundation of Chongqing (KJTD201321).

Corresponding author: Wujie Shi, wjshi@suda.edu.cn

finite non-solvable CP-groups. For the special finite CP-groups, W. Shi, W. Yang [8] and M. Deaconescu etc. (see [1] and [6]) classified the finite groups with all elements of prime order except the identity.

In [7], the authors proved that a finite CP-group G satisfies the following property:

Property A: For all subgroups H of G if (|H|, d) = 1(d > 1), then |H| divides the number of elements of order d in G.

Proof. Let H act on the set of elements of order d in G by conjugation $a \to h^{-1}ah$, where o(a) = d and $h \in H$. We get the H-conjugate class $C = \{a^h | \forall a \in H\}$. Since G is a CP-group, $C_H(a) = 1$ and |C| = |H|, the conclusion holds.

Then the second author of this paper asked whether the inverse is true, that is, if a finite group G satisfies Property A, is G a CP-group? This question is collected in "Unsolved Problem in Group Theory (Edition 18)" [5], which is Problem 18.112. In this short paper, we give a positive answer to this problem.

Next we denote by π a set of primes and $\pi(n)$ the set of all primes of the integer n (n > 1). Denote by π' the complement of the set π , and n_{π} the π -part of the integer n, i.e., the largest divisor of n including all prime divisors of π . Note that the element x can write $x = x_{\pi}x_{\pi'}$ such that x_{π} and $x_{\pi'}$ are π - and π' -elements respectively. Moreover, such resolution is unique. All groups in the following are considered finite. Since Sylow subgroups exist always, we have Property A is equivalent to the following property:

Property B: For all Sylow p-subgroups P of G if (|P|, d) = 1(d > 1), then |P| divides the number of elements of order d in G.

First, we cite a well known result due to Frobenius as follows.

Lemma 1[[3], **Theorem 9.1.2**]. Let G be a finite group and n a divisor of |G|, and let $f_G(n) = |\{g \in G | g^n = 1\}|$. Then $f_G(n)$ is a multiple of n.

Before starting our main result, we next give a lemma, which is the generalization of the result of Weisner [10].

Lemma 2. Let G be a finite group and g an element of G. Suppose that the order of x is n and denote by g^G the conjugacy class including g.

(1) if $g^G = \{g\}$ and m assumes all values prime to n, then the number of solutions of the equations $x^m = g$ is $\phi(n)f_G(|G|_{\pi(n)'})$, where ϕ is Euler function.

(2) if $g^G = \{g\}$ and m assumes all values not prime to n, suppose that the conjugacy classes of $\pi(n)$ -elements satisfied $x^m = g$ are $g_1^G, g_2^G, \dots, g_l^G$, then the number of solutions of the equations $x^m = g$ is $\sum_{i=1}^l |g_i^G| f_{C_G(g_i)}(|C_G(g_i)|_{\pi(n)'})$. (3) let $|g^G| > 1$ and the number of solutions of the equation $x^m = g$ in the

(3) let $|g^G| > 1$ and the number of solutions of the equation $x^m = g$ in the subgroup $C_G(g)$ be $\mu(C_G(g))$ for all m. Then the number of elements whose power are in the conjuagcy class g^G is $|g^G|\mu(C_G(g))$.

Proof. Let k be the greatest divisor of |G| that is prime to n, that is $k = |G|_{\pi(n)'}$. First we assume that $g^G = \{g\}$, and so g is a center element of G.

(1) the case of (m, n) = 1. So there exist integers m' and n' such that mm' + nn' = 1. Since $x^m = g$, it leads to $x^m_{\pi(n)} x^m_{\pi(n)'} = g$ and then $x^m_{\pi(n)} = g$ and $x^m_{\pi(n)'} = 1$. Furthermore $x_{\pi(n)} = x^{mm'+nn'}_{\pi(n)} = g^{m'}$ and (m', n) = 1. It follows that the solution set of the equation $x^m = g$ is the set $\{g^{m'}z|(m', n) = 1$ and z is a $\pi(n)'$ -element}. On the other hand, the number of $\pi(n)'$ -elements of G is $f_G(k)$, and so the number of solutions of the equation of $x^m = g$ is $\phi(n)f_G(k)$.

(2) the case of $(m, n) \neq 1$. Similarly, we can resolve x into the $\pi(n)$ -part and $\pi(n)'$ -part, that is $x = x_{\pi(n)}x_{\pi(n)'}$, and then $x_{\pi(n)}^m = g$ and $x_{\pi(n)'} = 1$. Hence the solution of equation $x^m = g$ can be only expressed by the form $x_{\pi(n)}z$, where $x_{\pi(n)}^m = g$ and z is a $\pi(n)'$ -element of $C_G(x_{\pi(n)})$. Next suppose that the conjugacy classes of $\pi(n)$ -elements satisfied $x^m = g$ are $g_1^G, g_2^G, \cdots, g_l^G$. Since the number of solutions of the equation $x^m = g$ generated by the conjugacy class g_i^G is $|g_i^G|f_{C_G(g_i)}(|C_G(g_i)|_{\pi(n)'})$, it follows that the number of all solutions is $\sum_{i=1}^l |g_i^G|f_{C_G(g_i)}(|C_G(g_i)|_{\pi(n)'})$.

is $\sum_{i=1}^{l} |g_i^G| f_{C_G(g_i)}(|C_G(g_i)|_{\pi(n)'}).$ (3) Let $g^G = \bigcup_{i=1}^{h} C(g_i)$ where $C(g_i) = \{g_i^{n_1}, g_i^{n_2}, \cdots, g_i^{n_r}\}$ for $1 \leq i \leq h$ and $(n_i, n) = 1$ such that any two elements in the same subset $C(g_i)$ are powers of each other, whereas no element is a power of an element in another subset $C(g_j)$ for $i \neq j$. Without loss of generalization, we set $n_1 = 1$. Note that if the power of the solution x of the equation $x^m = g$ is in the $C(g_i)$, then a power of x cannot be in the $C(g_j)$ for $i \neq j$. Otherwise, if $x^m = g_i^{n_t}$ and $x^{m'} = g_j^{n_l}$, then x^m and $x^{m'}$ are of same order n, so that each is a power of the other, whence i = j. Since each centralizer $C_G(g_i)$ is a conjugate subgroup of $C_G(g)$, the numbers of elements whose power in $C(g_i)$ be $\mu(C_G(g_i))$. So the number of elements whose power are in the conjuagcy class g^G is $|g^G|\mu(C_G(g))$.

From the above Lemma 1 and Lemma 2, we can get the following corollary which is first given by Weisner (Theorem 3, [10]).

Corollary. The number of elements whose orders are multiples of n (n > 1) is a multiple of $|G|_{\pi(n)'}$.

Now we give our main result as follows.

Theorem. Let G be a finite group. Then the following conditions are equivalent: (1) G is a CP-group;

(2) For every divisor d (d > 1) of |G| and for every subgroup H of G of order coprime to d, the order |H| divides the number of elements of G of order d;

(3) For every divisor d (d > 1) of |G|, the number of elements of order d is divided by the number $|G|_{\pi(d)'}$.

Proof. It's obvious that the (2) and (3) are equivalent. Next we prove the item (1) is equivalent to the (3). From Property A, we have $(1) \Rightarrow (3)$. Next we prove $(3) \Rightarrow (1)$. Denote by s_n the number of elements whose orders are n. Suppose that for every divisor d (d > 1) of |G|, the number of elements of

order d is divided by the number $|G|_{\pi(d)'}$. We will prove G is a CP-group. Now we assume that G has an element of order pq and $p \neq q$, that is $s_{pq} > 0$. By Corollary, since $p \neq q$, we have

 $|G|_q \big| \, |G|_{p'} \big| \sum_{p \mid d} s_d$ (this is the number of all elements whose order is a multiple of p), and

 $\sum_{p|d} s_d = (\sum_{pq|d} s_d + \sum_{p|d,q|d} s_d)$. (we divide these elements into two parts, one is the set of all elements whose order can be divided by pq, the other cannot divided by pq). Then

$$|G|_q \Big| \sum_{pq|d} s_d + \sum_{p|d,q\nmid d} s_d. \tag{*}$$

Next we consider $\sum_{p|d,q|d} s_d$, i.e. the number of all elements whose order can not be divided by pq but can be divided by p. In view of our hypothesis(the condition (3)), if $q \nmid d$, then $|G|_q ||G|_{\pi(d)'}|s_d$, and so

$$|G|_q |s_d|$$

It follows that

$$|G|_q \Big| \sum_{p|d,q \nmid d} s_d \tag{**}$$

By the (*) and (**) we have $|G|_q |\sum_{pq|d} s_d$. Similarly, we have $|G|_p |\sum_{pq|d} s_d$. It follows that

$$|G|_{\{p,q\}} \Big| \sum_{pq|d} s_d. \tag{\dagger}$$

On the other hand, by Corollary, we have

$$|G|_{\{p,q\}'} \Big| \sum_{pq|d} s_d. \tag{\dagger\dagger}$$

So by the (\dagger) and $(\dagger\dagger)$ we can get

$$|G| \Big| \sum_{pq|d} s_d$$

since $\sum_{pq|d} s_d < |G|$, and then $\sum_{pq|d} s_d = 0$, so $s_{pq} = 0$, which contradicts the hypothesis that there exists an element of order pq. Therefore G is a CP-group. \Box

Finally, we pose the following problem: the above theorem give a characterization of finite CP-groups using the number of elements and the orders of subgroups. Is there a similar characteristic property for finite C_{pp} -groups?

References

 M. Deaconescu, Classification of finite groups with all elements of prime order, Proc. Amer. Math. Soc., 106 (1989), 625-629.

- R. Brandl, Finite groups all of whose elements are of prime power order, Boll. Un. Mat. Ital., A(5) 18 (1981), 491-493.
- [3] M. Hall, The Theory of Groups, New York, MacMillan Co., 1959.
- [4] G. Higman, Finite groups in which every element has prime power order, J. London Math. Soc., 32 (1957), 335-342.
- [5] V.D.Mazurov and E. I.Khukhro, Unsolved Problem in Group Theory (Edition 18), Novosibirsk, 2014.
- [6] C.Kai Nah, M. Deaconescu, L.M. Lung, W. Shi, Corrigendum and addendum to "Classification of finite groups with all elements of prime order", Proc. AMS, 117(4), 1993, 1205-1207.
- [7] W. Shi, W. Yang, The finite groups all of whose elements are of prime power order, J. Yunnan Educational College Ser. B1(1986), 2-10. (Chinese)
- [8] W. Shi, W. Yang, A new characterization of A₅ and the finite groups in which every nonidentity element has prime order, J. Southwest-China Teachers' College Ser. B1(1984), 36-40. (Chinese)
- [9] M. Suzuki, On a class of doubly transitive groups, Ann. Math., 75 (1962), 105-145.
- [10] L. Weisner, On the number of elements of a group which have a power in a given conjugate set, Bull. Amer. Math. Soc., 31(1925), 492-496.